200 likes | 344 Views
Time/frequency analysis of some MOST data. F. Baudin (IAS) & J. Matthews (UBC). Just few words about time/frequency analysis. Classical Fourier transform: FT[S(t)]( w )= S(t) e i w t dt Windowed Fourier transform: WFT[S(t)]( w ,t 0 ) = S(t) W(t-t 0 ) e i w t dt
E N D
Time/frequency analysisof some MOST data F. Baudin (IAS) & J. Matthews (UBC)
Just few words about time/frequency analysis • Classical Fourier transform: • FT[S(t)](w)= S(t) eiwt dt • Windowed Fourier transform: • WFT[S(t)](w,t0) = S(t) W(t-t0) eiwt dt • If W(t) = gaussian => Gabor transform • If W(t,w) => wavelet transform
MOST data • g Equ [roAp] • z Oph [red giant] • h Boo [Post MS] • Procyon [MS]
g Equ : a simple case of beating Confirmation with simulation: modulation due to beating
z Oph : a more interesting case Signal + sine wave of constant amplitude => noise estimation
z Oph : a more interesting case Temporal modulation not due to noise: which origin?
[h Boo] Noise : not so interesting but… Instrumental periodicities (CCD temperature?)
Procyon: variability of the signal T < 10 days T > 10 days
Procyon: variability of the signal T < 10 days T > 10 days
Conclusion • Time/Frequency analysis allows : • variation with time of the (instrumental) noise [h Boo, Procyon] • simple interpretation (beating) of amplitude modulation [g Equ] • evidence of temporal variation of modes of unknown origin [z Oph]