560 likes | 738 Views
Black Holes in Deep Surveys. Meg Urry Yale University. The formation and evolution of galaxies is closely tied to the growth of black holes. Cosmic accretion (AGN) important for galaxy formation for black hole physics for understanding ionization, backgrounds, etc.
E N D
Black Holes in Deep Surveys Meg Urry Yale University
The formation and evolution of galaxies is closely tied to the growth of black holes • Cosmic accretion (AGN) important • for galaxy formation • for black hole physics • for understanding ionization, backgrounds, etc.
Cosmic Accretion • Opticallyselected quasars not representative, do not fairly sample cosmic accretion • Need less biased surveys
Supermassive black holeslikelyobscuredby gas and dust: • Local AGN Unification • More likely in early Universe (“Grand Unification”) • Explains hard X-ray “background”
Supermassive black holeslikelyobscuredby gas and dust: • Local AGN Unification • More likely in early Universe (“Grand Unification”) • Explains hard X-ray “background”
Supermassive black holeslikelyobscuredby gas and dust: • Local AGN Unification • More likely in early Universe (“Grand Unification”) • Explains hard X-ray “background”
X-Ray “background” spectrum (superposition of unresolved AGN)is very hard Courtesy Brusa, Comastri, Gilli, Hasinger
unabsorbed AGN spectrum Increasing NH
Deep Surveys for Obscured Accretion • Hard X-rays penetrate most obscuration • Energy re-radiated in infrared • High resolution optical separates host galaxy
Chandra HST Spitzer
GOODS Survey Deep Origins Observatories Great
GOODS designed to find obscured AGN out to the quasar epoch, z2-3 Spitzer Legacy, HST Treasury, Chandra Deep Fields Dickinson, Giavalisco, Giacconi, Garmire
MUSYC Chile Yale & Survey by MUltiwavelength Gawiser, van Dokkum, CMU, Lira, Maza
Extended Chandra Deep Field South Do GOODS/MUSYC/surveys reveal hidden populations of obscured AGN? Virani et al. 2006, Lehmer et al. 2006
Understanding AGN Demographics Quantitatively • Model X-ray spectrum • constrain N(L,z,NH) w XRBG spectrum, N(Sx), N(z) OR • Model full SED • constrain N(L,z,NH) w XRBG spectrum, N(Sx), N(z), plus N(Sopt), N(SIR), … Also, can assess selection effects in any filter or spectroscopy
Createensemble ofAGN, with continuous range of obscuration, correct SEDs for Unification (model),known luminosity distribution, known cosmic evolution Generate expected survey content at X-ray, Optical, Infrared, or any wavelengths,as function of flux and redshift Compare to dataGOODS, MUSYC,SEXSI, SWIRE, CLASXS, H2XMM, AMSS, GROTH, Lockman, Champ, …
HardX-ray LF & LDDE evolutionfor Type 1 AGN Ueda et al. 2003 Grid ofAGN spectra (LX,NH) with SDSS quasar spectrum (normalized to X-ray) dust/gas absorption (optical/UV/soft X-ray) infrared dust emission Nenkova et al. 2002, Elitzur et al. 2003 L* host galaxy NH distribution corresponding to torus geometry (matches obs) obscured AGN = 3 x unobscured (matches local obs) No dependence on z (for now) Simple linear dependence on luminosity (matches obs) Assumptions Ezequiel Treister, CMU, Jeffrey van Duyne, Brooke Simmons, Eleni Chatzichristou (Yale U.), David Alexander, Franz Bauer, Niel Brandt (Penn State U.), Anton Koekemoer, Leonidas Moustakas (STScI), Jacqueline Bergeron (IAP), Ranga-Ram Chary (SSC), Christopher Conselice (Caltech), Stefano Cristiani (Padova), Norman Grogin (JHU) 2004,ApJ, 616, 123 Also Treister et al. 2005, 2006a, 2006b, 2007
Dust emission models from Nenkova et al. 2002, Elitzur et al. 2003 • Simplest dust distribution that satisfies • NH = 1020 – 1024 cm-2 • 3:1 ratio (divided at 1022 cm-2) • Random angles NH distribution
Results • Match optical counts, N(z) • 50% AGN not in CDFs • MatchX-ray background • MatchIR counts • AGN are low % of IR EBL • Integral & Swift surveys for Compton-thick AGN • Number of Compton-thick AGN may be lower than assumed • Gives limit on reflection, accretion efficiency • Meta-analysis obs/unobs ratio increases with z
GOODS N+S Treister et al. 2004
redshifts of Chandra deep X-ray sources GOODS-N Treister et al. 2004 Barger et al. 2002,3, Hasinger et al. 2002, Szokoly et al. 2004
redshifts of Chandra deep X-ray sources GOODS-N Treister et al. 2004 Barger et al. 2002,3, Hasinger et al. 2002, Szokoly et al. 2004
Results • Match optical counts, N(z) • 50% AGN not in CDFs • Match X-ray background • MatchIR counts • AGN are low % of IR EBL • Integral & Swift surveys for Compton-thick AGN • Number of Compton-thick AGN may be lower than assumed • Gives limit on reflection, accretion efficiency • Meta-analysis obs/unobs ratio increases with z
X-ray background synthesis Treister et al. 2005
X-ray background synthesis Treister et al. 2005
X-ray background synthesis Treister et al. 2005
Results • Match optical counts, N(z) • 50% AGN not in CDFs • MatchX-ray background • Match IR counts • AGN are low % of IR EBL • Integral & Swift surveys for Compton-thick AGN • Number of Compton-thick AGN may be lower than assumed • Gives limit on reflection, accretion efficiency • Meta-analysis obs/unobs ratio increases with z
Near & mid-IR Spitzer counts Treister et al. 2005
Infrared “Background” Total AGN contribution to EBL <10% Treister et al. 2005
Results • Match optical counts, N(z) • 50% AGN not in CDFs • MatchX-ray background • MatchIR counts • AGN are low % of IR EBL • Integral & Swift surveys for Compton-thick AGN • Number of Compton-thick AGN may be lower than assumed • Gives limit on reflection, accretion efficiency • Meta-analysis obs/unobs ratio increases with z
X-Ray “Background” Spectrum 100 60 40 20 10 6 4 E F(E) [keV2 cm2 s1 keV1 str1] • 5 10 50 100 500 Energy (keV) Treister & Urry 2005
10 1 Treister et al. (2007) 3 1 # of Compton Thick AGN Integral & SWIRE 1 3 0 0.2 0.4 0.6 0.8 1 Normalization of Reflection Component
10 8 6 4 2 Treister et al. (2007) Local Black Hole Mass Density (105 Mo Mpc3) Marconi et al. (2004) Shankar et al. (2004) 0 0.2 0.4 0.6 0.8 1 Normalization of Reflection Component
Results • Match optical counts, N(z) • 50% AGN not in CDFs • MatchX-ray background • MatchIR counts • low AGN % of IR EBL • Integral & Swift surveys for Compton-thick AGN • Number of Compton-thick AGN may be lower than assumed • Gives limit on reflection, accretion efficiency • Meta-analysis obs/unobs ratio increases with z
7 surveys 2341 AGN 1229 with z BL=unobscured NL=obscured Area as function of X-ray flux & optical mag Treister & Urry 2006b
Black Hole Accretion • Obscured AGN dominate at 0<z<2 • Obscuration decreases w luminosity • Obscuration increases w redshift • Explains X-ray “background” & surveys • True z-distr does peak at z>1 (incomplete spectra) • Limits on Compton Thick AGNintegral, swift, spitzer • High degree of Compton reflection • to match observed low #s of CT AGN • to avoid overproducing local BH density • Total bolometric AGN light < 10% of extragalactic light (mostly stars) • Compare to local BH mass • efficiency of accretion, 0.1-0.2, where =L/mc2
Carie Cardamone Shanil ViraniJeff van DuyneBrooke SimmonsEzequiel Treister (PhD 2005) Jonghak Woo (PhD 2005)Matt O’Dowd (PhD 2004)Yasunobu UchiyamaEleni Chatzichristou Graduate students: Postdocs:
Luminosity-dependent density evolution 1042-3 ergs/s 1043-4 ergs/s 1044-5 ergs/s 1045-6 ergs/s >1046 ergs/s Hasinger et al. 2005
AGN SEDs in GOODS Objects with hard (absorbed) X-ray spectra: (weak) AGNor galaxy in optical luminous thermal infrared emission Van Duyne et al. 2007