190 likes | 387 Views
Non-equilibrium dynamics in the Dicke model. Izabella Lovas Supervisor : Balázs Dóra. Budapest University of Technology and Economics 2012.11.07. Outline. Rabi model Jaynes-Cummings model Dicke model Thermodynamic limit Quantum phase transition Normal and super-radiant phase
E N D
Non-equilibriumdynamicsintheDickemodel Izabella Lovas Supervisor: Balázs Dóra Budapest University of Technology and Economics 2012.11.07.
Outline • Rabi model • Jaynes-Cummingsmodel • Dickemodel • Thermodynamic limit • Quantumphasetransition • Normal and super-radiantphase • Experimentalrealization • General formula forthecharacteristicfunction of work • Specialcases-Suddenquench-Linearquench
The Rabi model f bozonicfield interactionbetween a bosonicfield and a singletwo-level atom energies of theatomicstates vacuum Rabi frequency transitionoperators betweenatomicstates j and i
The Jaynes-Cummingsmodel rotating-waveapproximation: areneglected conservation of excitation: is exactlysolvable: infiniteset of uncoupledtwo-stateSchrödinger equations for n excitations: basisstates iftheinitialstate is a basisstate, wegetsinusoidalchangesin populations: Rabi oscillations
The Dickemodel N atoms bosonicfield generalization of the Rabi model: N atoms, singlemodefield collectiveatomic operators -levelsystem pseudospinvectorof length
Thermodynamic limit QPT atcriticalcouplingstrength normalphase super-radiantphase super-radiant photonnumber atomicinversion super-radiant normal normal parameters: photonnumber atomicinversion
Thermodynamic limit Holstein-Primakoffrepresentation: Normalphase: twocoupledharmonicoscillators real parity operator: groundstate has positiveparity
Super-radiantphase macroscopicoccupation of thefield and theatomicensemble or lineartermsinthe Hamiltonian disappear where meanphotonnumber: globalsymmetry becomesbroken newlocal symmetries:
Phasetransition ground-stateenergy parameters: second-orderphase transition criticalexponents: photonnumbergrowslinearlynear meanfieldexponents
Experimentalrealization spontaneoussymmetry-breaking atcriticalpumppower evensites oddsites • constructiveinterference • increasedphotonnumberinthecavity K. Baumann, et al.Nature 464, 1301 (2010)
Experimentalresults The relativephase of thepump and cavityfielddependsonthe population of sublattices:
Statistics of work Definition: P(W) eigenvalue of eigenvalue of difference of final and initialground-stateenergies probabilitydensityfunction: Fourier-transform characteristicfunction: Jarzynski-inequality Tasaki-Crooksrelation appearsinfluctuation relations: M. Campisi, et al.Rev. Mod. Phys.83, 771 (2011)
Determination of G(u) forthenormalphase effective Hamiltonian: diagonalizationwithBogoliubov-transformation: eigenfrequencies: protocol: the Hamiltonian containsonlythefollowingterms:
Determination of G(u) forthenormalphase Heisenberg equation of motion: differentialequationsforthecoefficientswithinitialconditions where can be expressedinterms of
The characteristicfunction nthcumulant of thedistribution cumulantexpansion: expectedvalue: variance: inverseFourier-transform simplespecialcase: adiabaticprocess final and initialgroundstateenergies
Suddenquench position of peaks: parameters:
Linearquench diabaticregime characteristictimescales transitionbetween adiabatic and diabatic limit adiabaticregime diabatic limit: sudden quench adiabatic limit: consists of a single Dirac-delta
Small far from approximate formula forthesolution of thedifferentialequation cumulantexpansion nthcumulant, expectedvalue, variance adiabatic limit: approximate formula approximate formula numericalresult numericalresult
Summary • Quantum-opticalmodels:-Rabimodel-Jaynes-Cummingsmodel • Dickemodel-Quantumphasetransition-Normal and super-radiantphase-Experimentalrealization • Statistics of work • Characteristicfunctionforthenormalphase • Specialcases-Suddenquench-Linearquench