1 / 114

http :// mooni . fccj . org / ~ethall / period / period . htm

http :// mooni . fccj . org / ~ethall / period / period . htm. 1780-1849 Johann Dobereiner.

adeola
Download Presentation

http :// mooni . fccj . org / ~ethall / period / period . htm

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. http://mooni.fccj.org/~ethall/period/period.htm

  2. 1780-1849 Johann Dobereiner Johann Dobereiner ได้นำธาตุต่าง ๆ ที่พบในสมัยนั้นมาจัดเรียงเป็นหมวดหมู่ โดยนำธาตุที่มีสมบัติคล้ายกันมาจัดไว้ในหมวดหมู่เดียวกัน หมู่ละ 3 ธาตุ เรียงตามมวลอะตอมจากน้อยไปมาก และธาตุแต่ละหมู่มวลอะตอมที่อยู่ตรงกลางจะเป็นค่าเฉลี่ยของมวลอะตอมของอีก 2 ธาตุ โดยประมาณ กฎนี้เรียกว่า Law of Triads Ca   Sr   Ba    (40 + 137) ÷ 2 = 8840    88   137

  3. 1837-1898 John Newlands Li Be B C N O F Na Mg Al Si P S Cl K Ca John Newlands ได้จัดธาตุต่าง ๆ เป็นตารางธาตุ โดยพยายามเรียงลำดับตามมวลอะตอมจากน้อยไปมากเป็นแถวตามแนวนอน สมบัติของธาตุจะมีสมบัติคล้ายกันเป็นช่วง ๆ ของธาตุที่ 8 ตารางธาตุแบบนี้มีข้อจำกัดคือใช้ได้กับ 20 ธาตุแรกเท่านั้น

  4. 1834-1907 Dimitri Mendeleev Dmitri Ivanovich Mendeleev ได้เสนอการจัดตารางธาตุออกมาในลักษณะคล้าย ๆ กัน โดยพบว่าสมบัติต่าง ๆ ของธาตุสัมพันธ์กับมวลอะตอมของธาตุ ตาม Periodic Law คือ “ สมบัติของธาตุเป็นไปตามมวลอะตอมของธาตุโดยเปลี่ยนแปลงเป็นช่วง ๆ ตามมวลอะตอมที่เพิ่มขึ้น”

  5. 1834-1907 Dimitri Mendeleev ตาราง เปรียบเทียบสมบัติของธาตุเอคาซิลิคอนกับเจอร์เมเนียมที่ทำนายและที่ค้นพบ

  6. 1887-1915 Henry Moseley Henry Moseley ได้จัดเรียงธาตุตามเลขอะตอมจากน้อยไปหามาก ดังนั้นในปัจจุบัน Periodic Law มีความหมายว่า “สมบัติต่าง ๆ ของธาตุจะขึ้นอยู่กับเลขอะตอมของธาตุนั้น และขึ้นอยู่กับการจัดอิเล็กตรอนของธาตุเหล่านั้น” He was able to derive the relationship between x-ray frequency and number of protons

  7. ตารางธาตุในปัจจุบัน

  8. ns2np6 ns1 ns2np4 ns2np1 ns2np2 ns2np3 ns2np5 ns2 d10 d5 d1 4f 5f การจัดเรียงอิเล็กตรอนชั้นนอกสุดของธาตุ

  9. Periodic Classification of the Elements ตัวอย่างที่ 1 จงเติมข้อความต่อไปนี้ให้สมบูรณ์ เลขอะตอม โครงแบบอิเล็กตรอน คาบที่ หมู่ที่ สัญลักษณ์ธาตุ 8 _________________ _____ _____ __________ 36 _________________ _____ _____ __________ 42 _________________ _____ _____ __________ 50 _________________ _____ _____ __________

  10. Periodic Classification of the Elements

  11. การตั้งชื่อธาตุที่ค้นพบใหม่การตั้งชื่อธาตุที่ค้นพบใหม่

  12. การตั้งชื่อธาตุที่ค้นพบใหม่การตั้งชื่อธาตุที่ค้นพบใหม่ การตั้งชื่อธาตุที่ค้นพบในยุคแรกจะใช้ชื่อนักวิทยาศาสตร์ที่ค้นพบ ธาตุบางธาตุถูกค้นพบโดยนักวิทยาศาสตร์หลายคณะ ทำให้มีชื่อเรียกและสัญลักษณ์ต่างกัน

  13. การตั้งชื่อธาตุที่ค้นพบใหม่การตั้งชื่อธาตุที่ค้นพบใหม่ การที่คณะนักวิทยาศาสตร์ต่างคณะตั้งชื่อแตกต่างกัน ทำให้เกิดความสับสน International Union of Pure and Applied Chemistry (IUPAC)จึงได้กำหนดระบบการตั้งชื่อขึ้นใหม่ โดยใช้กับชื่อธาตุที่มีเลขอะตอมเกิน 100 ขึ้นไป ทั้งนี้ให้ตั้งชื่อธาตุโดยระบุเลขอะตอมเป็นภาษาละติน แล้วลงท้ายด้วย -ium ระบบการนับเลขในภาษาละตินเป็นดังนี้ 0 = nil (นิล) 1 = un (อุน) 2 = bi (ไบ) 3 = tri (ไตร) 4 = quad (ควอด) 5 = pent (เพนท์) 6 = hex (เฮกซ์) 7 = sept (เซปท์) 8 = oct (ออกตฺ) 9 = enn (เอนน์)

  14. การตั้งชื่อธาตุที่ค้นพบใหม่การตั้งชื่อธาตุที่ค้นพบใหม่ ตัวอย่างที่1 จงอ่านชื่อตามระบบ IUPAC พร้อมทั้งเขียนสัญลักษณ์ของธาตุต่อไปนี้ 1. ธาตุที่ 106 =_________________________________สัญลักษณ์___________ 2. ธาตุที่ 208 =_________________________________สัญลักษณ์___________ 3. ธาตุที่ 119 =_________________________________สัญลักษณ์___________ 4. ธาตุที่ 135 =_________________________________สัญลักษณ์___________ 5. ธาตุที่ 374 =_________________________________สัญลักษณ์___________ ตัวอย่างที่2 ธาตุที่มีสัญลักษณ์ต่อไปนี้มีเลขอะตอมเท่าไร 1. Unh =________________ 2. Uno =_________________

  15. ลำดับการค้นพบธาตุ

  16. สมบัติของธาตุตามหมู่และตามคาบสมบัติของธาตุตามหมู่และตามคาบ 1. แรงดึงดูดของนิวเคลียส(Zeff) บ่งบอกถึงอิเล็กตรอนที่อยู่ในชั้นนอกสุดว่าสามารถถูกดูดโดยประจุที่นิวเคลียสได้มากน้อยเพียงใด ทำให้พบว่าถ้าจำนวนอิเล็กตรอนมากขึ้นแรงดึงดูดของนิวเคลียสจะมากขึ้นด้วย ทำให้ Zeff มากขึ้น Element Al Si P S Cl Ar Atomic# 13 14 15 16 17 18 Zeff 1+ 2+ 3+ 4+ 5+ 6+

  17. 2. ขนาดอะตอม ส่วนใหญ่ใช้ค่ารัศมีอะตอม ซึ่งอาจใช้หน่วยเป็นพิโกเมตร (pm) หรือแองสตรอม (A๐ ) 1. รัศมีโคเวเลนต์ รัศมีโคเวเลนต์ คือระยะทางครึ่งหนึ่งของความยาวพันธะโคเวเลนต์ ระหว่างอะตอมชนิดเดียวกัน ความยาวพันธะ Cl-Cl = 198/2 = 99 pm ถ้าความยาวพันธะ C-Cl = 176 pm รัศมีอะตอมของ Cl = 99 pm ดังนั้นรัศมีอะตอมของ C = (176-99) = 77 pm

  18. 2. รัศมีแวนเดอร์วาลส์ รัศมีแวนเดอร์วาลส์ คือระยะทางครึ่งหนึ่งของระยะระหว่างนิวเคลียสของอะตอมที่อยู่ใกล้ที่สุด H2 H2 Kr Kr รัศมีแวนเดอร์วาลส์ของ Kr = 200 pm รัศมีแวนเดอร์วาลส์ของ H = 120 pm

  19. 3. รัศมีโลหะ รัศมีโลหะ คือมีค่าเท่ากับครึ่งหนึ่งของระยะระหว่างนิวเคลียสของอะตอมโลหะที่อยู่ใกล้กันมากที่สุด Mg Mg รัศมีอะตอมของโลหะ Mg = 320/2 = 160 pm 320 pm

  20. 4. รัศมีไอออน Mg : 1s2 2s2 2p6 3s2 160 pm รัศมีไอออน คือระยะระหว่างนิวเคลียสของไอออนคู่หนึ่งๆ ที่มีแรงยึดเหนี่ยวซึ่งกันและกันในโครงผลึก Mg2+ : 1s2 2s2 2p6 65 pm O : 1s2 2s2 2p4 73 pm O2- : 1s2 2s2 2p6 140 pm

  21. ขนาดอะตอม ข. ธาตุในคาบเดียวกัน เมื่อเลขอะตอมเพิ่มขึ้น ขนาดอะตอมจะเล็กลง เนื่องจากธาตุในคาบเดียวกันมีจำนวนระดับพลังงานเท่ากัน แต่เมื่อเลขอะตอมเพิ่ม จำนวนโปรตอนจะเพิ่มขึ้นด้วย แรงดึงดูดระหว่างนิวเคลียสกับเวเลนซ์อิเล็กตรอนเพิ่มขึ้น ขนาดจึงลดลง ก. ธาตุในหมู่เดียวกัน เมื่อเลขอะตอมเพิ่มขึ้น ขนาดอะตอมจะใหญ่ขึ้น เพราะเมื่อเลขอะตอมเพิ่มขึ้น จะมีจำนวนระดับพลังงานเพิ่มขึ้น แม้ว่าจำนวนโปรตอนจะเพิ่มขึ้นด้วยก็ตาม แต่แรงดึงดูดต่อเวเลนซ์อิเล็กตรอนมีน้อย จึงทำให้ขนาดใหญ่ขึ้น กล่าวได้ว่ากรณีนี้การเพิ่มระดับพลังงานมีผลมากกว่าการเพิ่มจำนวนโปรตอน

  22. ขนาดไอออน “ไอออนของโลหะในหมู่เดียวกันจะมีขนาดใหญ่ขึ้นเมื่อเลขอะตอมเพิ่มขึ้น” และ“ไอออนของโลหะในคาบเดียวกันจะมีขนาดเล็กลงเมื่อเลขอะตอมเพิ่มขึ้น” “ไอออนของอโลหะในหมู่เดียวกัน จะมีขนาดใหญ่ขึ้นเมื่อเลขอะตอมเพิ่มขึ้น” และ “ไอออนของโลหะในคาบเดียวกันจะมีขนาดเล็กลง เมื่อเลขอะตอมเพิ่มขึ้น”

  23. Which is larger ? • Be2+ or B3+ • Al3+ or P3- • K or Ca • As or Te • O2- or F-

  24. Ionization energy :พลังงานที่ใช้ในการดึง e-หลุดออกจากในสภาวะก๊าซ อะตอมใดมีขนาดเล็ก จะทำให้ดึง e- ออกยาก IE สูง อะตอมใดมีขนาดใหญ่ จะทำให้ดึง e- ออกง่าย IE ต่ำ

  25. 2500 He Ne 2000 F Ar 1500 N Kr Cl First ionization energy (kJ/mol) H Br O P C Zn As 1000 Be S Mg Fe Ni Se Si Ti Cr Ge B Ca Co Cu Sr Mn 500 Sc V Al Ga Li Na K Rb 0 5 10 15 20 25 30 35 40 Atomic number First Ionization Energy Plot

  26. First Ionization Energy เพิ่มขึ้น First Ionization Energy เพิ่มขึ้น ตามคาบจำนวนประจุบวกเพิ่มมากขึ้น e- ถูกดึงดูดมาอยู่ใกล้ Nu ได้มากe- หลุดยาก IE สูง ตามหมู่ระดับพลังงานมากขึ้น e- อยู่ไกล Nu มาก e- หลุดง่าย IE ต่ำ

  27. Which member of each pair has the greater first ionization energy? Why? • Na or Na+ • F or Cl • N or O • O or F • Na or Mg • K or Na

  28. X (g) + e- X-(g) O (g) + e- O-(g) F (g) + e- F-(g) Electron affinity(EA) คือพลังงานที่ปลดปล่อยออกมาจากการรับอิเล็กตรอนของอะตอมธาตุแล้วเกิดเป็นแอนไอออน ณ สถานะแก๊ส Electron Affinity ธาตุที่มี EA สูง จะคายพลังงานออกมามากเมื่อรับอิเล็กตรอนเข้าไป ทำให้เกิดไอออนลบที่มีความเสถียรมาก ดังนั้นค่า EA จึงใช้ทำนายความสามารถในการเป็นไอออนลบ กล่าวคือ ธาตุที่มี EA สูง จะสามารถเกิดเป็นไอออนลบได้ง่ายกว่าธาตุที่มี EA ต่ำ H = -328 kJ/mol EA = +328 kJ/mol H = -141 kJ/mol EA = +141 kJ/mol

  29. Electron Affinity ธาตุในหมู่เดียวกัน ค่าสัมพรรคภาพอิเล็กตรอนลดลงจากบนลงล่าง เพราะธาตุข้างบนมีขนาดเล็กกว่าธาตุข้างล่าง จึงมีแรงดึงดูดระหว่างประจุบวกที่นิวเคลียสกับอิเล็กตรอนที่เพิ่มเข้าในอะตอมได้มากกว่า ระยะทางจากนิวเคลียสถึงขอบเขตของอะตอมสั้นกว่าอะตอมที่มีขนาดใหญ่ที่อยู่ข้างล่างของหมู่ ธาตุข้างบนรับอิเล็กตรอนได้ดีกว่าธาตุข้างล่าง EA จึงมากกว่า ธาตุในคาบเดียวกัน ค่าสัมพรรคภาพอิเล็กตรอนเพิ่มขึ้นจากซ้ายไปขวาของตารางธาตุ เพราะธาตุทางขวามีขนาดเล็กกว่าธาตุทางซ้าย จึงรับ e- ได้ดีกว่า e- ที่เข้ามาใหม่จะถูกดึงดูดด้วย Nucleus ได้มากกว่า EA จึงมากกว่า

  30. เพราะเหตุใดโลหะหมู่ 2A จึงรับอิเล็กตรอนได้ยากกว่าโลหะหมู่ 1A โลหะหมู่ 2A มีอิเล็กตรอนอยู่เต็ม subshell s แล้ว อิเล็กตรอนที่เข้ามาใหม่จะอยู่ห่างจากนิวเคลียสและถูก shield มากกว่า ในกรณีของโลหะหมู่ 1A ที่ยังมีที่ว่างใน subshell s ธาตุใดมีค่า electron affinity สูงกว่า * Li or Na* O or F

  31. Electronegativity อิเล็กโตรเนกาติวิตี้ ( Electronegativity ) เป็นค่าสมมติที่แสดงความสามารถในการดึงดูดอิเล็กตรอนคู่ร่วมพันธะจาก Nucleus e- คู่ร่วมพันธะของอะตอมที่มีขนาดเล็ก จะได้รับแรงดึงดูดจาก Nucleus มาก  EN สูง e- คู่ร่วมพันธะของอะตอมที่มีขนาดใหญ่ จะได้รับแรงดึงดูดจาก Nucleus น้อย  EN ต่ำ อะตอมที่มีสภาพไฟฟ้าลบมาก จะดึงอิเล็กตรอนที่ใช้ร่วมกันในการเกิดพันธะโคเวเลนต์เข้าหาตัวเองได้มากกว่า ได้มีผู้หาค่าสภาพไฟฟ้าลบไว้หลายแบบ แต่ที่นิยมใช้อ้างอิงมากที่สุด คือ ของพอลิง ( linus Pauling ) โดยกำหนดให้ฟลูออรีนมีค่าสภาพไฟฟ้าลบมากที่สุด คือ เท่ากับ 4.0 และซีเซียม ( Cs ) มีสภาพไฟฟ้าลบน้อยที่สุด คือเท่ากับ 0.7

  32. Electronegativity ธาตุในคาบเดียวกัน ค่า EN จะเพิ่มขึ้นจากซ้ายไปขวาเพราะขนาดอะตอมเล็กลงทำให้ได้รับแรงดึงดูดจากนิวเคลียสมากกว่าอะตอมที่มีขนาดใหญ่ EN จึงสูงขึ้น ธาตุหมู่เดียวกัน ค่า EN จะลดลงจากบนลงล่าง เพราะขนาดอะตอมใหญ่ขึ้นทำให้นิวเคลียสมีโอกาสดึงดูดอิเล็กตรอนได้น้อยกว่าอะตอมที่มีขนาดเล็ก EN จึงต่ำลง

  33. Back to Main Page หมู่ IA หมู่IVA สูง (โลหะ) ต่ำ จุดหลอมเหลวและจุดเดือด ก. โลหะในหมู่เดียวกัน คือ หมู่ IA , IIA, และ IIIA “จุดหลอมเหลวและจุดเดือดมีแนวโน้มลดลง เมื่อเลขอะตอมเพิ่มขึ้น” เนื่องจากความแข็งแรงของพันธะโลหะลดลง เพราะมีขนาดอะตอมใหญ่ขึ้น ข. โลหะในคาบเดียวกัน คือ โลหะในหมู่ IA , IIA, และ IIIA ในคาบต่างๆ “จุดหลอมเหลวและจุดเดือดมีแนวโน้มสุงขึ้น เมื่อเลขอะตอมเพิ่มขึ้น” เนื่องจากมีพันธะโลหะที่แข็งแรงมากขึ้น ทั้งนี้เพราะอะตอมมีขนาดเล็กลงและมีจำนวนเวเลนต์อิเล็กตรอนเพิ่มขึ้น หมายเหตุ สำหรับธาตุหมู่ IVA และ VA จุดหลอมเหลวและจุดเดือดมีแนวโน้มของการเปลี่ยนแปลงไม่ชัดเจน เนื่องจากมีโครงสร้างและแรงยึดเหนี่ยวระหว่างอะตอมที่แตกต่างกัน

  34. Back to Main Page จุดหลอมเหลวและจุดเดือด ก.อโลหะในหมู่เดียวกัน คือ หมู่ VIA , VIIA, และ VIIIA “จุดหลอมเหลวและจุดเดือดมีแนวโน้มเพิ่มขึ้น เมื่อเลขอะตอมเพิ่มขึ้น” เนื่องจากแรงยึดเหนี่ยวระหว่างโมเลกุลคือแรงวันเดอร์วาลส์เพิ่มขึ้น เพราะมวลโมเลกุลและขนาดโมเลกุลเพิ่มขึ้น ข. อโลหะในคาบเดียวกัน คือ อโลหะ หมู่ VA, VIA , VIIA, และ VIIIA “จุดหลอมเหลวและจุดเดือดมีแนวโน้มลดต่ำลงเมื่อเลขอะตอมเพิ่มขึ้น” เนื่องจากแรงยึดเหนี่ยวระหว่างโมเลกุลคือ แรงวันเดอร์วาลส์มีค่าลดลง เพราะขนาดของโมเลกุลเล็กลง โดยเฉพาะก๊าซเฉื่อยเป็นก๊าซประเภทโมเลกุลเดี่ยว และมีขนาดเล็ก มีจุดหลอมเหลวและจุดเดือดต่ำมาก หมู่ VA หมู่VIIIA ต่ำ (อโลหะ) สูง

  35. Oxidation Number เลขออกซิเดชัน ( Oxidation Number ) เป็นตัวเลขเพื่อแสดงค่าประจุไฟฟ้าหรือประจุไฟฟ้าสมมติของไอออนหรืออะตอมของธาตุ ซึ่งส่วนใหญ่เป็นเลขจำนวนเต็มรวมทั้งศูนย์และอาจมีเครื่องหมายเป็นบวกหรือลบก็ได้ การกำหนดค่าเลขออกซิเดชัน มีกฎดังนี้ คือ 1. อะตอมของธาตุต่าง ๆ ในสภาวะอิสระ ไม่ว่าจะอยู่ในรูปที่เป็นอะตอมเดียว หรือโมเลกุล จะมีเลขออกซิเดชันเท่ากับศูนย์ เช่น Na Be He O2 S8 2. ไอออนที่มีอะตอมเดี่ยวเลขออกซิเดชันจะมีค่าเท่ากับประจุของไอออนนั้น เช่น Na+มีเลขออกซิเดชัน เท่ากับ +1 Be2+ มีเลขออกซิเดชัน เท่ากับ +2 O2- มีเลขออกซิเดชัน เท่ากับ -2 3. เลขออกซิเดชันของโลหะอัลคาไล ( หมู่ IA ) และโลหะอัลคาไลน์เอิร์ท ( หมู่ IIA ) ในสารประกอบต่าง ๆ มีค่าเท่ากับ +1 และ +2 ตามลำดับ

  36. Oxidation Number • 4. เลขออกซิเดชันของออกซิเจนในสารประกอบส่วนมาก มีค่าเท่ากับ -2 ยกเว้นในกรณี • สารประกอบเปอร์ออกไซด์ เช่น H2O2 และ Na2O2 ออกซิเจนมีเลขออกซิเดชัน -1 • สารประกอบซุปเปอร์ออกไซด์ เช่น KO2  ออกซิเจนมีเลขออกซิเดชัน -1/2 • สารประกอบ OF2 ออกซิเจนมีเลขออกซิเดชัน +2 • 5. เลขออกซิเดชันของไฮโดรเจนในสารประกอบส่วนมากมีค่าเท่ากับ +1 ยกเว้นในสารประกอบพวกไฮไดรด์ไอออนิก ซึ่งไฮโดรเจนมีค่าเลขออกซิเดชันเท่ากับ -1 เช่น LiAlH4 และ NaBH4 • 6. ผลรวมทางพีชคณิตของเลขออกซิเดชันของอะตอมทั้งหมดในสูตรเคมีใด ๆ จะมีค่าเท่ากับประจุสำหรับกลุ่มของอะตอมที่เขียนแสดงในสูตรนั้น ๆ เช่น ผลรวมของเลขออกซิเดชันของ KMnO4 เท่ากับ 0 ผลรวมของเลขออกซิเดชันของ NO3- เท่ากับ -1

  37. Oxidation Number ตัวอย่างที่1 จงหาเลขออกซิเดชันของ S ใน H2SO4 สมมติเลขออกซิเดชันของ S = x เลขออกซิเดชันของ H = +1 2 อะตอมของ H มีเลขออกซิเดชันรวม = (+1  2) = +2 เลขออกซิเดชันของ O = -2 4 อะตอมของ O มีเลขออกซิเดชันรวม = (-2 4) = -8 ผลรวมของเลขออกซิเดชันธาตุทั้งหมดในสารประกอบ เท่ากับ 0 ดังนั้น +2 + x + (-8) = 0 x = +6 เลขออกซิเดชันของ S ใน H2SO4 = +6 ตัวอย่างที่2 จงหาเลขออกซิเดชันของ Co ใน [Co(CN)6]4- สมมติเลขออกซิเดชันของ Co = x เลขออกซิเดชันของ CN- = -1 ผลรวมเลขออกซิเดชันของ CN = (-1  6) = -6 ผลรวมเลขออกซิเดชันธาตุทั้งหมดในไอออนเท่ากับประจุของไอออน เท่ากับ -4 ดังนั้น x + (-6) = -4 x = +2 เลขออกซิเดชันของ Co ใน [Co(CN)6]4- = +2

  38. Oxidation Number

  39. Oxidation Number ตัวอย่าง จงหาเลขออกซิเดชันธาตุที่ขีดเส้นใต้ต่อไปนี้ 1) Na2S 6) CO32- 2) HClO4 7) OF2 3) NaBrO3 8) H2O2 4) NO3- 9) CH3OH 5) (NH4)2SO4 10) S8 Find the oxidation number of sulphur in the following compounds- SO42-, S2O32-, H2S2O7, S4O62-, SO32- Find the oxidation number of the metal in the following complexes- AlF63-, KClO2, KHSO4, CrF63-, AlCl3

  40. สมบัติของธาตุและสารประกอบสมบัติของธาตุและสารประกอบ

  41. Increasing reactivity

  42. Increasing reactivity

  43. B เป็นกึ่งโลหะ

  44. Bismuth(Bi) Antimony(Sb) Arsenic(As) ตัวอย่างออกไซด์: N2O, NO2, N2O4, N2O5,P4O6, P4O10

  45. SO3(s) +H2O(l) H2SO4(aq) Group 6A Elements Oxygen (O) Polonium (Po) Sulphur (S) Selenium (Se) Tellurium(Te) ตัวอย่างออกไซด์: SO2,SO3

  46. Increasing reactivity

  47. Group 8A Elements

  48. ธาตุกึ่งโลหะ

More Related