330 likes | 627 Views
Visoka poslovno-tehnička škola Užice. OPERATIVNI SISTEMI. MATEMATIČKE OSNOVE. dr Ljubica Diković, mr Slobodan Petrović. BINARNA AZBUKA. predstavlja skup od samo dva simbola, 0 i 1. Ozn . B={0,1} Sve informacije u računaru se prikazuju kao reči binarne azbuke.
E N D
Visoka poslovno-tehnička škola Užice OPERATIVNI SISTEMI MATEMATIČKE OSNOVE dr Ljubica Diković, mr Slobodan Petrović
BINARNA AZBUKA • predstavlja skup od samo dva simbola, 0 i 1. Ozn. B={0,1} • Sve informacije u računaru se prikazuju kao reči binarne azbuke. • Broj reči dužine k, određen je obrascem 2k- broj varijacija k-te klase sa ponavljanjem. • Broj se sastoji od cifaraa azbuka od simbola (slova)
BINARNA AZBUKA Pogodnost korišćenja binarne azbuke: - u elektronskoj tehnologiji lako ostvariti objekat sa dva stabilna diskretna stanja (0 ili 1). Digitalna kola računara imaju na izlazu samo 2 naponska stanja: - napon na izlazu <>0 (ozn. DA ili 1) - napon na izlazu = 0 (ozn. NE ili 0), što znači da su stanja digitalnih kola predstavljena ciframa binarnog brojnog sistema: 0,1.
ĆELIJA, REGISTAR Objekat sa dva diskretna stanja nazivamo ćelijom. Više ćelija organizovanih u fizičku celinu da registruju reč (broj) binarne azbuke čine registar. Sadržaj registra može biti podatak ili naredba (instrukcija).
NOTACIJE • Binarni brojčani sistem • Sistemske cifre: 0 i 1 • Bit (binary digit): pojedinačna binarna cifra • Binarne jednakosti • 1 Byte (B) = 8 bits (b) • 1 Kilobyte (kB) = 1024 bytes = 210 B • 1 Megabyte (MB) = 1024 kB = 1,048,576 B = 210kB = 220B • 1 Gigabyte (GB) = 1024 MB = 1,073,741,824 B = 210MB = 220 kB = 23 0B • 1 Terabyte (TB) = 1024 GB = 210 GB = ...
OSNOVA BROJČANOG SISTEMA, POZICIONI SISTEM • Osnova brojčanog sistemapredstavlja broj različitih cifara tog sistema i označava se sa N. • Mesto cifre u zapisu broja naziva se pozicija cifre, a broj cifara dužina broja. • Krajnje desna cifra u zapisu broja je cifra najmanje težine. • Princip pozicionog obeležavanja realnih brojeva zasniva se na postojanju mesne (pozicione) vrednosti cifre i na postojanju osnove sistema N, za koju se može uzeti ma koji prirodan broj veći od 1.
Brojčani SISTEMI • Brojčani sistem kod koga je N=10, S={0,1,…9} naziva se dekadni sistem. • Primer; (39625)10 = 3*104 + 9*103 + 6*102 + 2*101 + 5*100 = 3*10 000+ 9*1 000 + 6*100 + 2*10+5*1 = 30 000 + 9 000 + 600 + 20 + 5 = 39625 (143)10=1*102 + 4*101 +3*100 =1*100+ 4*10 +3*1
Brojčani sistem kod koga je N=8, S={0,1,2,3,4,5,6,7} naziva se oktalni sistem. Brojčani sistem kod koga je N=2, S={0,1} naziva se binarni sistem. Brojčani sistem kod koga je N=16, S={0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} naziva se heksadekadni sistem. Brojčani SISTEMI
Prevođenje binarnog broja u dekadni • Prevođenje binarnog broja u dekadni - 1011001 • (1 0 1 1 0 0 1 )2 = (89)10 • 6 5 4 3 2 1 0 (pozicija) • 26 25 24 23 22 21 20 (vrednost ) • 1*26 + 0*25 + 1*24 + 1*23 + 0*22 + 0*21 + 1*20 = • 1*64+ 0*32 + 1*16+ 1*8 + 0*4 + 0*2 + 1*1 =(89)10 • (11101)2 = 1*24 + 1*23 + 1*22 + 0*21 + 1*20 = • = 16 + 8 + 4 + 0 + 1 = (29)10
Prevođenje binarnog broja u dekadni (1001001)2 6543210 (pozicija cifre) (1001001)2= =1*26+0*25+0*24+1*23+0*22+0*21+1*20= =(64)10+(8)10+(1)10=(73)10
Prevođenje dekadnog broja u binarni • Dekadni broj u binarni 1310 = 1*8 + 1*4 + 0*2 + 1*1 = 1*23+1*22+ 0*21+ 1*20 = (1101)2 6110 = 1*32 + 1*16 + 1*8 + 1*4 + 0*2 + 1*1 = 1*25 + 1*24 + 1*23 +1*22+ 0*21+ 1*20 = (111101)2
Konverzija iz dekadnog u binarni format Broj 98 konvertuj u binarni format. 98=1100010 98=1 1 0 0 0 1 0
Konverzija iz dekadnog u binarni format 21=10101 21=10101
Izvrši prevođenje dekadnog broja 0.375 u binarni brojni sistem. Prevođenje brojeva iz dekadnog u binarni sistem (0.375)10=(0.011)2
BINARNA ARITMETIKA (+) 11111 (10011)2 + (01111)2 =(100010)2 010 (2) +100 (4) =110 (6) 111 0101 (5)+0111 (7)=1100 (12) 00011010 + 00001100 11 prenos (00011010)2=(26)10 + (00001100)2=(12)10 (00100110)2 =(38)10 00010011 + 00111110 11111 prenos (00010011)2=(19)10 + (00111110)2=(62)10 (01010001)2 =(81)10
Binarna reprezentacija označenih brojeva (+9)10=0 10012 (+0)10=0 00002 (-7)10=1 01112 (-0)10=1 00002 ispred binarnog broja uvodi se još jedan bit (umetnuti bit 0 za pozitivan znak,a umetnuti bit 1 za negativan znak). Krajnji levi znak označava znak broja, a ostalih n-1 bitova broj. • 8 bita 33 je predstavljen sa 0010 0001 -33 je predstavljen sa 1010 0001 • 16 bita 33 je predstavljen sa 0000 0000 0010 0001 -33 je predstavljen sa1000 0000 0010 0001
BINARNA ARITMETIKA (-) 111(7)- 101(5) 010 (2) 01 (10011)2 -(01111)2 (00100)2 1 (10011)2 +(10000)2 (100011)2 +1 (000100)2 + 11 111(7)+ 010(C5) 1001 + 1 0010 (+2) 7-(+5)=7+(C5) 101 (5) 010 (C5) Da bi se dobiobroj -5 potrebno je napravititzv.nepotpunikomplementbroja 5 (C5), takošto sve0postanu1iobratno. Ukoliko se kodsabiranjacifaranajveće težine pojavi prenos 1, govori nam da je rezultat pozitivan (>0)
BINARNA ARITMETIKA (-) 5-7= 101-111= (+5) -(C7) 101 (5) + 000 (C7) 101 (C2) 1 010 (-2) Ukoliko se kodsabiranjacifaranajveće težine NE pojavi prenos 1, govori nam da je rezultat negativan (<0). Traženi rezultat, razlika, jednaka je nepotpunom komplementu dobijenog broja ( sve 1 u 0 i obrnuto)
PITANJA • Prevedi dekadni ceo broj u binarni oblik i obratno. • Sabrati dva binarna broja.
KOD, KODIRANJE I DEKODIRANJE • Binarni kod predstavlja slova, cifre i specijalne znake u obliku binarnih cifara. • Kodiranje predstavlja funkciju koja preslikava skup objekata B u reči binarne azbuke A, odnosno u skup A*, pri čemu se svakom objektu iz skupa B pridružuje po jedna reč azbuke A. Osnova koda je broj simbola azbuke A. • Dekodiranje predstavlja inverznu funkciju funkcije kodiranja, odnosno postupak raspoznavanja objekata iz skupa B na osnovu zadate reči azbuke A ili skupa A*.
Kod • Kod je ravnomeran, ako je dužina svih kodnih reči u jeziku ista. U suprotnom, kod je neravnomeran. • Kod je jednoznačan, ako se različitim ciframa dekadnog brojnog sistema, pridružuju različiti binarni kodovi. • Optimalni zahtevi koje bi kodiranje trebalo da ispuni: - Različitim ciframa dekadnog brojnog sistema moraju se jednoznačno pridružiti različiti binarni kodovi. - Najveća dekadna cifra 9 se kodira najvećim binarnim brojem. - Parnim, odnosno neparnim dekadnim ciframa, odgovaraju parni odnosno neparni binarni kodovi. - Ukoliko dekadne cifre ispunjavaju uslov a+b=9, tada ukoliko se cifri a pridruži neki binarni kod, cifri b se mora pridružiti njegov komplement. - Svako mesto u binarnom kodu mora imati svoju težinu.
ALFA-NUMERIČKI KODOVI ASCII kod (American National Standard Code for Information Interchange) • je binarni kod razvijen od strane Američkog Instituta za standarde, pri čemu se svaki karakter predstavlja nizom od 7 cifara i na različit način se može predstaviti 128 karaktera. • Svaki znak u ASCII tabeli kodova, se nalazi u preseku odgovarajuće vrste i kolone. Prve 4 cifre se uzimaju sa mesta vrsta, a ostale 3 sa mesta kolona. • ASCII je kod (šifra) za predstavljanje engleskih znakova (slova, brojeva, znakova interpunkcije i posebnih znakova) celim brojevima. • Svakom znaku se dodeljuje broj od 0 do 127. Na primer, ASCII kod za veliko slovo M je broj 77. • Zapis P@Q u ASCII kodu izgleda na sledeći način: 01010000 01000000 01010001 • Postoje i drugi kodovi za predstavljanje znakova. Na IBM kompjuterima u upotrebi je 8 bitni binarni kod EBCDIC (eng. Extended Binary Coded Decimal Interchange Code).
ASCII zapis se jednostavno deli u 4 grupe korišćenjem bitova 5 i 6 na sledeći način: • Bit 6 Bit 5 Grupa karaktera • 0 0 Kontrolni karakteri • 0 1 Cifre & Interpunkcijski znaci • 1 0 Velika slova & Specijalni znaci • 1 1 Mala slova & Specijalni znaci
PROBLEMI OSMOBITNOG KODOVANJA ZNAKOVA I UNICODE KAO REŠENJE • Tradicionalno, kodovanje znakova je koristilo 8 bita što je ograni-čilo broj znakova koji se kodovanjem može predstaviti na 256. • Navedeni problem je rešen stvaranjem novog načina kodovanja za predstavljanje znakova celim brojevima, odnosno uvođenjem kodne šeme koja je označena kao UCS (eng. Universal Character Set) ili Unicode. • Unicode je stvoren sa ciljem da obuhvati sva pisma svetskih jezika i da omogući njihovo kombinovanje u istom dokumentu. Unicode je 32-bitni (4 bajta) kodni sistem, poznat pod imenom UCS4, jer koristi 4 bajta za predstavljanje jednog znaka. • U najširoj upotrebi je podskup UCS-a, označen kao USC2, koji koristi 16 bita za predstavljanje znakova. Unicode se može predstaviti kao: - Standard za kodovanje znakova - Uključuje sve glavne svetske jezike - Koduje znake na jednostavan i dosledan način - Objavio ga je Unicode Consortium, ver. 2.0 objavljena 1996. godine
PITANJA • Šta je kod? • ASCII kod. • Unicod.