1 / 19

Watching bubbles rise in a tank Dissecting gas transport in natural waters

Niko Bigalke (GEOMAR) • Gregor Rehder (IOW) • Gieselher Gust (TUHH) Andreas Meyer (TUHH) Bubble workshop GEOMAR, Kiel, Germany, 8 & 9 January 2013. Watching bubbles rise in a tank Dissecting gas transport in natural waters. Why tank experiments ?. Validity ( Cost ).

adina
Download Presentation

Watching bubbles rise in a tank Dissecting gas transport in natural waters

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Niko Bigalke (GEOMAR) • Gregor Rehder (IOW) • Gieselher Gust (TUHH) Andreas Meyer (TUHH) Bubble workshop GEOMAR, Kiel, Germany, 8 & 9 January 2013 Watchingbubblesrise in a tank Dissecting gas transport in naturalwaters

  2. Why tank experiments? • Validity • (Cost) • Easy accessibility • Versatility • Productivity • Controllability Pro: Con: Fingerprint individual parametersorproperties, thataredifficulttoassess in the real world.

  3. Hydrate stability in theocean Bigalke et al., 2010

  4. Interfacialhydrate - effects immobile surface mobile surface after Leifer (www.bubbleology.com)

  5. Interfacialhydrate - effects immobile surface mobile surface after Leifer (www.bubbleology.com)

  6. Interfacialhydrate - effects • Flowfieldaroundbubble • Motioncharacteristics (e.g. shape/pathoscillations) • Risevelocity • Shape • Gas exchangekinetics • Bubble/dropletshape • Gasexchangekinetics immobile surface mobile surface after Leifer (www.bubbleology.com)

  7. Interfacialhydrate - effects • Flowfieldaroundbubble • Motioncharacteristics (e.g. shape/pathoscillations) • Risevelocity • Shape • Gas exchangekinetics • Bubble/dropletshape • Gasexchangekinetics immobile surface mobile surface after Leifer (www.bubbleology.com) • Bigalke, Rehder, Gust; Envrion. Sci. Technol. 42(14), 5241-5246, 2008 • Bigalke, Enstad, Rehder, Alendal; Deep-Sea Res. I 57(9), 1102-1110, 2010

  8. P, Tcoordinatesalonggivenhydrotherm within CO2-HSF rCO2 < rSW uTexpectedtodecreasewithadaptedinjectiondepth uT CO2droplets / CH4bubbles Bigalke et al., 2008

  9. DL 2 - PressureFacility • h = 140 cm • ID = 30 cm • V = 99 L • Pmax = 55 MPa • 0 °C > T > RT Housed in modified, thermostable, seaworthy, 20-foot ISO container (TUHH, G. Gust) Actuatorpanelwith Lab-View controlledpneumaticpumps

  10. DL 2 - PressureFacility • Quick releasemechanism • 2 opticalwindows(onepivotable lock) • 2 16-pole SubConmicroplugs • Sampling/fluid injectionports H. Steffen Lid: Bottom: • 24-pole seaconconnector • 5 mechanicalportsfor sample handling

  11. Producing & imagingbubbles streamingto HDD Top camera Piston Diffusingscreen CO2 Pump • 8 bit, ¼“ progressivescan CCD • 640 x 480 Px • 60 fps • 1:2.8, 80 mm Nikon lens • 30 Px/mm CO2container Injectornozzle Recirculation pump PMMA tube

  12. Results – CO2droplets f c 17.5 MPa, 275.1 K 9.9 MPa, 276.1 K a e b g 8.3 MPa, 276.7 K 14.7 MPa, 275.6 K a d 20.2 MPa, 275.0 K 5.7 MPa, 277.9 K g 11.9 MPa, 275.9 K Chen et al., 2003

  13. Results – CO2droplets f c 17.5 MPa, 275.1 K 9.9 MPa, 276.1 K e b 8.3 MPa, 276.7 K 14.7 MPa, 275.6 K a d 20.2 MPa, 275.0 K 5.7 MPa, 277.9 K g 11.9 MPa, 275.9 K Chen et al., 2003

  14. Results – CO2droplets a c b Dr = 0.048 g/cm3 a b c b Dr= 0.060 g/cm3 a c • Bimodalvelocitydistributionwithin HSF • High velocitydropletswithin HSF anddroplets outside HSF equally fast • Riseratesaberrantfrom norm within HSF due tomissinghydrateskins Dr= 0.076 g/cm3

  15. Results – CO2droplets a c b Dr = 0.048 g/cm3 a b c b Dr= 0.060 g/cm3 a • Dropletsdeformmoreeasilywithouthydratecoating but • Bothtypesspherical @ re < 2 mm • uTsimilar @ re < 2 mm • Thissizeregime: surface rigid even w/o hydrateskin c Dr= 0.076 g/cm3

  16. Results – CH4bubbles uT

  17. sphericity Results – CH4bubbles 4.0 °C uT

  18. Summary • Hydrate skinformationdeepwithininside HSF isthenorm andisidentifiedbyhighersphericities in bubblesanddroplets • The numberofexceptionsincreaseswithproximitytothehydratephaseboundary • Hydrate skin formation strongly affects rise velocities  Droplets without hydrate interfaces rise at velocities of <50% higher than their equally buoyant counterparts with hydrate

  19. ThankYou!

More Related