90 likes | 249 Views
2D Signals and Systems. Primitive functions in 2D. h. u(h,k). h. (0,0). k. (h,k). d. d. (h-1,k-1). (h,k-1). d. k. Plan. Latex. 0. 0. 0. 0. 0. 0. 1. 2. 3. 0. 0. 4. 5. 6. 0. I(h,k). 0. 7. 8. 9. 0. 0. 0. 0. 0. 0. Convolution in 2D. 0. p(0,0). p(0,1). 0.
E N D
Primitive functions in 2D h u(h,k) h (0,0) k (h,k) d d (h-1,k-1) (h,k-1) d k Plan Latex
0 0 0 0 0 0 1 2 3 0 0 4 5 6 0 I(h,k) 0 7 8 9 0 0 0 0 0 0 Convolution in 2D 0 p(0,0) p(0,1) 0 0 0 0 0 p(1,0) p(1,1) 0 1 2 3 0 -1 .2 Input Image 0 4 5 6 0 I(h,k) .3 .5 Impulse Response p(h,k) 0 7 8 9 0 0 0 0 0 0 At each output Pixel: overlay, find products then add p(1,1) p(1,0) 0 Flip Impulse Response p(0,1) p(0,0) n1 = -h; n2 = -k 0 0 0 0 0 0 -1 0 0 0 g(h,k) 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 3 0 0 4 5 6 0 I(h,k) 0 7 8 9 0 0 0 0 0 0 Convolution in 2D 0 p(0,0) p(0,1) 0 0 0 0 0 p(1,0) p(1,1) 0 1 2 3 0 -1 .2 Input Image 0 4 5 6 0 I(h,k) .3 .5 Impulse Response p(h,k) 0 7 8 9 0 0 0 0 0 0 At each output Pixel: overlay, find products then add p(1,1) p(1,0) 0 Flip Impulse Response p(0,1) p(0,0) n1 = -h; n2 = -k 0 0 0 0 0 0 -1 0 -.8 0 0 g(h,k) 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 3 0 0 4 5 6 0 I(h,k) 0 7 8 9 0 0 0 0 0 0 Convolution in 2D 0 p(0,0) p(0,1) 0 0 0 0 0 p(1,0) p(1,1) 0 1 2 3 0 -1 .2 Input Image 0 4 5 6 0 I(h,k) .3 .5 Impulse Response p(h,k) 0 7 8 9 0 0 0 0 0 0 At each output Pixel: overlay, find products then add p(1,1) p(1,0) 0 Flip Impulse Response p(0,1) p(0,0) n1 = -h; n2 = -k 0 0 0 0 0 0 -1 0 -.8 Filter mask 0 0 g(h,k) 0 0 -3.1 0 0 0 0 0 Latex
Image Extension for boundary conditions Zero extension Image Periodic Extension Extension by reflection Latex
g(h,k) p(h,k) p(h,k) p(h,k) p(h,k) f(h,k) f(h,k) + + I(h,k) I(h,k) Convolution identities f(h,k) Associativity p(h,k) (*) g(h,k) f(h,k) = Distributivity
Causality (examining impulse response support) Non Causal Output Location of mask Causal Filter Support Semi-Causal Latex Or Causal if TV Raster used as causality reference
Filtering as a matrix operation H is Block Diagonal, Symmetric If i is extended using a periodic extension, then H becomes circulant Latex