1 / 20

Kevin Beard Muons Inc. Alex Bogacz, Vasiliy Morozov, Yves Roblin Jefferson Lab

Muon RLA - Design Status and Simulations. Kevin Beard Muons Inc. Alex Bogacz, Vasiliy Morozov, Yves Roblin Jefferson Lab. Linac and RLAs - IDS. RLA with 2-pass Arcs. 0.9 GeV. 244 MeV. 192 m. 79 m. 79 m. 0.6 GeV/pass. 3.6 GeV. 264 m. 12.6 GeV. 2 GeV/pass. IDS Goals:

adonis
Download Presentation

Kevin Beard Muons Inc. Alex Bogacz, Vasiliy Morozov, Yves Roblin Jefferson Lab

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Muon RLA - Design Status and Simulations Kevin Beard Muons Inc. Alex Bogacz, Vasiliy Morozov, Yves Roblin Jefferson Lab NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  2. Linac and RLAs - IDS RLA with 2-pass Arcs 0.9 GeV 244 MeV 192 m 79 m 79 m 0.6 GeV/pass 3.6 GeV 264 m 12.6 GeV 2 GeV/pass • IDS Goals: • Define beamlines/lattices for all components • Matrix based end-to-end simulation (machine acceptance) (OptiM) • Field map based end-to-end simulation: ELEGANT, GPT and G4Beamline • Error sensitivity analysis • Component count and costing • Two regular droplet arcs replaced by one two-pass combined function magnet arc C. Bontoui NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  3. 5 6 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 192 Linear Pre-accelerator – 0.9 GeV 24 short cryos 24 medium cryos 1.5 Tesla solenoid 2 Tesla solenoid NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  4. Transit time effect – G4BL C. Bontoiu M. Aslaninejad NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  5. 25 25 Size_Y[cm] Size_X[cm] 0 0 0 Ax_bet Ay_bet Ax_disp Ay_disp 192 Linear Pre-accelerator – Longitudinal dynamics 72o before crest on crest (2.5)2eN = 30 mm rad (2.5)2 sDpsz/mmc= 150 mm Longitudinal phase-space (s, Dp/p) axis range: s = ±50 cm, Dp/p = ±0.3 NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  6. Pre-Linac - Longitudinal phase-space Initial distribution ex/ey = 4.8 mm rad el = sDpsz/mmc = 24 mm ELEGANT (Fieldmap) OptiM (Matrix) G4beamline (Tracking) Δp/p * 1000 Δs[cm] NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  7. m- m+ 1 30 BETA_X&Y[m] DISP_X&Y[m] -1 0 0 BETA_X BETA_Y DISP_X DISP_Y 30 Injection/Extraction Chicane $Lc = 60 cm $angH = 9 deg. $BH = 10.2 kGauss $Lc = 60 cm $angV = 5 deg. $BV = 4.7 kGauss m+ m- m+ 0.9 GeV 1.5 GeV m- 50 cm 1.7 m 2.1 GeV Double achromat Optics FODO lattice: 900/1200 (h/v) betatron phase adv. per cell -H V H -H H -V 3 cells 4 cells NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  8. Multi-pass Linac Optics – Bisected Linac 5 15 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 39.9103 5 15 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 78.9103 ‘half pass’ , 900-1200 MeV initial phase adv/cell 90 deg. scaling quads with energy quad gradient 1-pass, 1200-1800 MeV mirror symmetric quads in the linac quad gradient NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  9. 5 30 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 389.302 Multi-pass bi-sected linac Optics bx = 13.0 m by = 14.4 m ax=-1.2ay=1.5 bx = 7.9 m by = 8.7 m ax=-0.8ay=1.3 Arc 2 Arc 3 Arc 4 Arc 1 bx = 6.3 m by = 7.9 m ax=-1.2ay=1.3 bx,y → bx,y axy → - axy bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 bx,y → bx,y axy → - axy bx,y → bx,y axy → - axy bx,y → bx,y axy → - axy quad grad. 3.0 GeV 0.9 GeV 1.2 GeV 1.8 GeV 2.4 GeV 3.6 GeV length NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  10. Mirror-symmetric ‘Droplet’ Arc – Optics 3 15 BETA_X&Y[m] DISP_X&Y[m] -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 130 (bout = bin and aout = -ain , matched to the linacs) E =1.2 GeV 2 cells out transition 2 cells out transition 10 cells in NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  11. 5 90 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 389.302 Alternative multi-pass linac Optics Arc 2 bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 Arc 1 bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 Arc 3 bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 Arc 4 bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 bx,y → bx,y axy → - axy Arc 4 Arc 2 Arc 3 Arc 1 bx,y → bx,y axy → - axy bx,y → bx,y axy → - axy bx,y → bx,y axy → - axy quad grad. 3.0 GeV 0.9 GeV 1.2 GeV 1.8 GeV 2.4 GeV 3.6 GeV length NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  12. Arcs ‘Crossing’ - Vertical Bypass 2 30 BETA_X&Y[m] DISP_X&Y[m] -2 0 m+ m- 0 BETA_X BETA_Y DISP_X DISP_Y 42 E = 1.2. GeV 4 vertical bends: B = 1 Tesla L = 10 cm V V Dy = 25 cm -V -V 4 cells (900 FODO) NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  13. ‘Droplet’ Arcs scaling – RLA I • Fixed dipole field: Bi =10.5 kGauss • Quadrupole strength scaled with momentum: Gi = × 0.4 kGauss/cm • Arc circumference increases by: (1+1+5) × 6 m = 42 m NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  14. ‘Droplet’ Arcs scaling – RLA II • Fixed dipole field: Bi = 40.3 kGauss • Quadrupole strength scaled with momentum: Gi = × 1.5 kGauss/cm • Arc circumference increases by: (1+1+5) × 12 m = 84 m NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  15. Component Count NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  16. 300 60 C = 117.6 m Two-pass Arc Layout • Simple closing of arc geometry when using similar super cells • 1.2 / 2.4 GeV/c arc design used as an illustration can be scaled/optimized for higher energies preserving the factor of 2 momentum ratio of the two passes • Droplet arc: • 60 outward bend • 300 inward bend • 60 outward bend Vasiliy Morozov NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  17. Large Acceptance Super-cell (2 passes) • Each arc is composed of symmetric super cells consisting of linear combined-function magnets (each bend: 2.50) 2.4 GeV Optics 1.2 GeV Optics q = 600 NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  18. ‘Droplet’ Arc - Spreader/Recombiner • First few magnets of the super cell have dipole field component only, serving as Spreader/Recombiner * Trajectories are shown to scale NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  19. Summary • Piece-wise end-to-end simulation with OptiM/ELEGANT (transport codes) • Solenoid linac • Injection chicane I (new more compact design) • RLA I + Injection chicane II + RLA II • Alternative multi-pass linac optics • Currently under study… GPT/G4beamline • End-to-end simulation with fringe fields (sol. & rf cav.) • Engineer individual active elements (magnets and RF cryo modules) • μ decay, background, energy deposition • Strong synergy with muon collider program NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

  20. 0.5 PHASE_X&Y 0 0 Q_X Q_Y 30 1 30 BETA_X&Y[m] DISP_X&Y[m] -1 0 0 BETA_X BETA_Y DISP_X DISP_Y 30 Chicane - Double Achromat Optics betatron phase Dfy = 2p Dfx = 2p Double achromat Optics FODO quads: L[cm] = 50 F: G[kG/cm] = 0.322 D: G[kG/cm] = -0.364 sextupole pair to correct vert. emittance dilution -H V H -H H -V 3 cells 4 cells NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

More Related