960 likes | 982 Views
Explore multipole fields in magnets from Maxwell’s Equations, covering solutions, physical interpretations, generating techniques, iron-core magnets, and more.
E N D
Multipole Magnets from Maxwell’s Equations Alex Bogacz USPAS, Hampton, VA, Jan. 17-28, 2011
Maxwell’s Equations for Magnets - Outline • Solutions to Maxwell’s equations for magneto static fields: • in two dimensions (multipole fields) • in three dimensions (fringe fields, insertion devices...) • How to construct multipole fields in two dimensions, using electric currents and magnetic materials, considering idealized situations. • A. Wolski, Academic Lectures, University of Liverpool , 2008 USPAS, Hampton, VA, Jan. 17-28, 2011
Basis • Vector calculus in Cartesian and polar coordinate systems; • Stokes’ and Gauss’ theorems • Maxwell’s equations and their physical significance • Types of magnets commonly used in accelerators. • following notation used in: A. Chao and M. Tigner, “Handbook of Accelerator Physics and Engineering,” World Scientific (1999). USPAS, Hampton, VA, Jan. 17-28, 2011
Maxwell’s equations USPAS, Hampton, VA, Jan. 17-28, 2011
Maxwell’s equations USPAS, Hampton, VA, Jan. 17-28, 2011
Physical interpretation of USPAS, Hampton, VA, Jan. 17-28, 2011
Physical interpretation of USPAS, Hampton, VA, Jan. 17-28, 2011
Linearity and superposition USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields USPAS, Hampton, VA, Jan. 17-28, 2011
Generating multipole fields from a current distribution USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields from a current distribution USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields from a current distribution USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields from a current distribution USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields from a current distribution USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields from a current distribution USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields from a current distribution USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields from a current distribution USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields from a current distribution USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields from a current distribution USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields from a current distribution USPAS, Hampton, VA, Jan. 17-28, 2011
Superconducting quadrupole - collider final focus USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Generating multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Generating multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Generating multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Generating multipole fields in an iron-core magnet USPAS, Hampton, VA, Jan. 17-28, 2011
Maxwell’s Equations for Magnets - Summary USPAS, Hampton, VA, Jan. 17-28, 2011
Maxwell’s Equations for Magnets - Summary USPAS, Hampton, VA, Jan. 17-28, 2011 Maxwell’s equations impose strong constraints on magnetic fields that may exist. The linearity of Maxwell’s equations means that complicated fields may be expressed as a superposition of simpler fields. In two dimensions, it is convenient to represent fields as a superposition of multipole fields. Multipole fields may be generated by sinusoidal current distributions on a cylinder bounding the region of interest. In regions without electric currents, the magnetic field may be derived as the gradient of a scalar potential. The scalar potential is constant on the surface of a material with infinite permeability. This property is useful for defining the shapes of iron poles in multipole magnets.
Multipoles in Magnets - Outline Deduce that the symmetry of a magnet imposes constraints on the possible multipole field components, even if we relax the constraints on the material properties and other geometrical properties; Consider different techniques for deriving the multipole field components from measurements of the fields within a magnet; Discuss the solutions to Maxwell’s equations that may be used for describing fields in three dimensions. USPAS, Hampton, VA, Jan. 17-28, 2011
Previous lecture re-cap USPAS, Hampton, VA, Jan. 17-28, 2011
Previous lecture re-cap USPAS, Hampton, VA, Jan. 17-28, 2011
Allowed and forbidden harmonics USPAS, Hampton, VA, Jan. 17-28, 2011
Allowed and forbidden harmonics USPAS, Hampton, VA, Jan. 17-28, 2011
Allowed and forbidden harmonics USPAS, Hampton, VA, Jan. 17-28, 2011
Allowed and forbidden harmonics USPAS, Hampton, VA, Jan. 17-28, 2011