1 / 18

Alex Bogacz Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc.

Muon RLA - Design Status and New Options. Alex Bogacz Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc. Linac and RLAs - IDS. RLA with FFAG Arcs. 0.9 GeV. 244 MeV. 146 m. 79 m. 79 m. Vasiliy Morozov. 0.6 GeV/pass. 3.6 GeV. 264 m. 12.6 GeV. 2 GeV/pass.

sauda
Download Presentation

Alex Bogacz Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Muon RLA - Design Status and New Options Alex Bogacz Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc. MAP Winter Meeting, Jefferson Lab, March 2, 2011

  2. Linac and RLAs - IDS RLA with FFAG Arcs 0.9 GeV 244 MeV 146 m 79 m 79 m Vasiliy Morozov 0.6 GeV/pass 3.6 GeV 264 m 12.6 GeV 2 GeV/pass • IDS Goals: • Define beamlines/lattices for all components • Matrix based end-to-end simulation (machine acceptance) (OptiM) • Field map based end-to-end simulation: ELEGANT, GPT and G4Beamline • Error sensitivity analysis • Component count and costing • Two regular droplet arcs replaced by one two-pass FFAG arc K. Beard Y. Roblin C. Bontoui MAP Winter Meeting, Jefferson Lab, March 2, 2011

  3. Pre-Linac - Longitudinal phase-space Initial distribution ex/ey = 4.8 mm rad el = sDpsz/mmc = 24 mm OptiM (Matrix) ELEGANT (Fieldmap) MAP Winter Meeting, Jefferson Lab, March 2, 2011

  4. m- m+ 1 30 BETA_X&Y[m] DISP_X&Y[m] -1 0 0 BETA_X BETA_Y DISP_X DISP_Y 30 Injection/Extraction Chicane $Lc = 60 cm $angH = 9 deg. $BH = 10.2 kGauss $Lc = 60 cm $angV = 5 deg. $BV = 4.7 kGauss m+ m- m+ 0.9 GeV 1.5 GeV m- 50 cm 1.7 m 2.1 GeV Double achromat Optics FODO lattice: 900/1200 (h/v) betatron phase adv. per cell -H V H -H H -V 3 cells 4 cells MAP Winter Meeting, Jefferson Lab, March 2, 2011

  5. 0.5 PHASE_X&Y 0 0 Q_X Q_Y 30 1 30 BETA_X&Y[m] DISP_X&Y[m] -1 0 0 BETA_X BETA_Y DISP_X DISP_Y 30 Chicane - Double Achromat Optics betatron phase Dfy = 2p Dfx = 2p Double achromat Optics FODO quads: L[cm] = 50 F: G[kG/cm] = 0.322 D: G[kG/cm] = -0.364 sextupole pair to correct vert. emittance dilution -H V H -H H -V 3 cells 4 cells MAP Winter Meeting, Jefferson Lab, March 2, 2011

  6. Multi-pass Linac Optics – Bisected Linac 5 15 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 39.9103 5 15 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 78.9103 ‘half pass’ , 900-1200 MeV initial phase adv/cell 90 deg. scaling quads with energy quad gradient 1-pass, 1200-1800 MeV mirror symmetric quads in the linac quad gradient MAP Winter Meeting, Jefferson Lab, March 2, 2011

  7. 5 30 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 389.302 Multi-pass bi-sected linac Optics bx = 13.0 m by = 14.4 m ax=-1.2ay=1.5 bx = 7.9 m by = 8.7 m ax=-0.8ay=1.3 Arc 2 Arc 3 Arc 4 Arc 1 bx = 6.3 m by = 7.9 m ax=-1.2ay=1.3 bx,y → bx,y axy → - axy bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 bx,y → bx,y axy → - axy bx,y → bx,y axy → - axy bx,y → bx,y axy → - axy quad grad. 3.0 GeV 0.9 GeV 1.2 GeV 1.8 GeV 2.4 GeV 3.6 GeV length MAP Winter Meeting, Jefferson Lab, March 2, 2011

  8. 3 15 BETA_X&Y[m] DISP_X&Y[m] -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 72 Linac-to-Arc – Chromatic Compensation E =1.8 GeV 3 15 BETA_X&Y[m] DISP_X&Y[m] -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 36.9103 • ‘Matching quads’ are invoked • No 900 phase adv/cell maintained across the ‘junction’ • Chromatic corrections needed – two pairs of sextupoles MAP Winter Meeting, Jefferson Lab, March 2, 2011

  9. Linac-to-Arc - Chromatic Corrections 3 15 3 15 BETA_X&Y[m] DISP_X&Y[m] BETA_X&Y[m] DISP_X&Y[m] -3 0 -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 36.9103 0 BETA_X BETA_Y DISP_X DISP_Y 72 initial uncorrected two families of sextupoles MAP Winter Meeting, Jefferson Lab, March 2, 2011

  10. Mirror-symmetric ‘Droplet’ Arc – Optics 3 15 BETA_X&Y[m] DISP_X&Y[m] -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 130 (bout = bin and aout = -ain , matched to the linacs) E =1.2 GeV 2 cells out transition 2 cells out transition 10 cells in MAP Winter Meeting, Jefferson Lab, March 2, 2011

  11. 5 90 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 389.302 Alternative multi-pass linac Optics Arc 2 bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 Arc 1 bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 Arc 3 bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 Arc 4 bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 bx,y → bx,y axy → - axy Arc 4 Arc 2 Arc 3 Arc 1 bx,y → bx,y axy → - axy bx,y → bx,y axy → - axy bx,y → bx,y axy → - axy quad grad. 3.0 GeV 0.9 GeV 1.2 GeV 1.8 GeV 2.4 GeV 3.6 GeV length MAP Winter Meeting, Jefferson Lab, March 2, 2011

  12. Arcs ‘Crossing’ - Vertical Bypass 2 30 BETA_X&Y[m] DISP_X&Y[m] -2 0 m+ m- 0 BETA_X BETA_Y DISP_X DISP_Y 42 E = 1.2. GeV 4 vertical bends: B = 1 Tesla L = 10 cm V V Dy = 25 cm -V -V 4 cells (900 FODO) MAP Winter Meeting, Jefferson Lab, March 2, 2011

  13. ‘Droplet’ Arcs scaling – RLA I • Fixed dipole field: Bi =10.5 kGauss • Quadrupole strength scaled with momentum: Gi = × 0.4 kGauss/cm • Arc circumference increases by: (1+1+5) × 6 m = 42 m MAP Winter Meeting, Jefferson Lab, March 2, 2011

  14. ‘Droplet’ Arcs scaling – RLA II • Fixed dipole field: Bi = 40.3 kGauss • Quadrupole strength scaled with momentum: Gi = × 1.5 kGauss/cm • Arc circumference increases by: (1+1+5) × 12 m = 84 m MAP Winter Meeting, Jefferson Lab, March 2, 2011

  15. Component Count MAP Winter Meeting, Jefferson Lab, March 2, 2011

  16. Summary • Piece-wise end-to-end simulation with OptiM/ELEGANT (transport codes) • Solenoid linac • Injection chicane I (new more compact design) • RLA I + Injection chicane II + RLA II • Chromaticity correction with sextupoles validated via tracking • Alternative multi-pass linac optics • Currently under study… GPT/G4beamline • End-to-end simulation with fringe fields (sol. & rf cav.) • Engineer individual active elements (magnets and RF cryo modules) MAP Winter Meeting, Jefferson Lab, March 2, 2011

  17. Backup slides MAP Winter Meeting, Jefferson Lab, March 2, 2011

  18. Linac-RLA Acceptance Initial phase-space after the cooling channel at 220 MeV/c bx,y = 2.74 m ax,y = -0.356 bg = 2.08 MAP Winter Meeting, Jefferson Lab, March 2, 2011

More Related