180 likes | 291 Views
Muon RLA - Design Status and New Options. Alex Bogacz Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc. Linac and RLAs - IDS. RLA with FFAG Arcs. 0.9 GeV. 244 MeV. 146 m. 79 m. 79 m. Vasiliy Morozov. 0.6 GeV/pass. 3.6 GeV. 264 m. 12.6 GeV. 2 GeV/pass.
E N D
Muon RLA - Design Status and New Options Alex Bogacz Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc. MAP Winter Meeting, Jefferson Lab, March 2, 2011
Linac and RLAs - IDS RLA with FFAG Arcs 0.9 GeV 244 MeV 146 m 79 m 79 m Vasiliy Morozov 0.6 GeV/pass 3.6 GeV 264 m 12.6 GeV 2 GeV/pass • IDS Goals: • Define beamlines/lattices for all components • Matrix based end-to-end simulation (machine acceptance) (OptiM) • Field map based end-to-end simulation: ELEGANT, GPT and G4Beamline • Error sensitivity analysis • Component count and costing • Two regular droplet arcs replaced by one two-pass FFAG arc K. Beard Y. Roblin C. Bontoui MAP Winter Meeting, Jefferson Lab, March 2, 2011
Pre-Linac - Longitudinal phase-space Initial distribution ex/ey = 4.8 mm rad el = sDpsz/mmc = 24 mm OptiM (Matrix) ELEGANT (Fieldmap) MAP Winter Meeting, Jefferson Lab, March 2, 2011
m- m+ 1 30 BETA_X&Y[m] DISP_X&Y[m] -1 0 0 BETA_X BETA_Y DISP_X DISP_Y 30 Injection/Extraction Chicane $Lc = 60 cm $angH = 9 deg. $BH = 10.2 kGauss $Lc = 60 cm $angV = 5 deg. $BV = 4.7 kGauss m+ m- m+ 0.9 GeV 1.5 GeV m- 50 cm 1.7 m 2.1 GeV Double achromat Optics FODO lattice: 900/1200 (h/v) betatron phase adv. per cell -H V H -H H -V 3 cells 4 cells MAP Winter Meeting, Jefferson Lab, March 2, 2011
0.5 PHASE_X&Y 0 0 Q_X Q_Y 30 1 30 BETA_X&Y[m] DISP_X&Y[m] -1 0 0 BETA_X BETA_Y DISP_X DISP_Y 30 Chicane - Double Achromat Optics betatron phase Dfy = 2p Dfx = 2p Double achromat Optics FODO quads: L[cm] = 50 F: G[kG/cm] = 0.322 D: G[kG/cm] = -0.364 sextupole pair to correct vert. emittance dilution -H V H -H H -V 3 cells 4 cells MAP Winter Meeting, Jefferson Lab, March 2, 2011
Multi-pass Linac Optics – Bisected Linac 5 15 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 39.9103 5 15 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 78.9103 ‘half pass’ , 900-1200 MeV initial phase adv/cell 90 deg. scaling quads with energy quad gradient 1-pass, 1200-1800 MeV mirror symmetric quads in the linac quad gradient MAP Winter Meeting, Jefferson Lab, March 2, 2011
5 30 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 389.302 Multi-pass bi-sected linac Optics bx = 13.0 m by = 14.4 m ax=-1.2ay=1.5 bx = 7.9 m by = 8.7 m ax=-0.8ay=1.3 Arc 2 Arc 3 Arc 4 Arc 1 bx = 6.3 m by = 7.9 m ax=-1.2ay=1.3 bx,y → bx,y axy → - axy bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 bx,y → bx,y axy → - axy bx,y → bx,y axy → - axy bx,y → bx,y axy → - axy quad grad. 3.0 GeV 0.9 GeV 1.2 GeV 1.8 GeV 2.4 GeV 3.6 GeV length MAP Winter Meeting, Jefferson Lab, March 2, 2011
3 15 BETA_X&Y[m] DISP_X&Y[m] -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 72 Linac-to-Arc – Chromatic Compensation E =1.8 GeV 3 15 BETA_X&Y[m] DISP_X&Y[m] -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 36.9103 • ‘Matching quads’ are invoked • No 900 phase adv/cell maintained across the ‘junction’ • Chromatic corrections needed – two pairs of sextupoles MAP Winter Meeting, Jefferson Lab, March 2, 2011
Linac-to-Arc - Chromatic Corrections 3 15 3 15 BETA_X&Y[m] DISP_X&Y[m] BETA_X&Y[m] DISP_X&Y[m] -3 0 -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 36.9103 0 BETA_X BETA_Y DISP_X DISP_Y 72 initial uncorrected two families of sextupoles MAP Winter Meeting, Jefferson Lab, March 2, 2011
Mirror-symmetric ‘Droplet’ Arc – Optics 3 15 BETA_X&Y[m] DISP_X&Y[m] -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 130 (bout = bin and aout = -ain , matched to the linacs) E =1.2 GeV 2 cells out transition 2 cells out transition 10 cells in MAP Winter Meeting, Jefferson Lab, March 2, 2011
5 90 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 389.302 Alternative multi-pass linac Optics Arc 2 bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 Arc 1 bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 Arc 3 bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 Arc 4 bx = 3.2 m by = 6.0 m ax=-1.1ay=1.5 bx,y → bx,y axy → - axy Arc 4 Arc 2 Arc 3 Arc 1 bx,y → bx,y axy → - axy bx,y → bx,y axy → - axy bx,y → bx,y axy → - axy quad grad. 3.0 GeV 0.9 GeV 1.2 GeV 1.8 GeV 2.4 GeV 3.6 GeV length MAP Winter Meeting, Jefferson Lab, March 2, 2011
Arcs ‘Crossing’ - Vertical Bypass 2 30 BETA_X&Y[m] DISP_X&Y[m] -2 0 m+ m- 0 BETA_X BETA_Y DISP_X DISP_Y 42 E = 1.2. GeV 4 vertical bends: B = 1 Tesla L = 10 cm V V Dy = 25 cm -V -V 4 cells (900 FODO) MAP Winter Meeting, Jefferson Lab, March 2, 2011
‘Droplet’ Arcs scaling – RLA I • Fixed dipole field: Bi =10.5 kGauss • Quadrupole strength scaled with momentum: Gi = × 0.4 kGauss/cm • Arc circumference increases by: (1+1+5) × 6 m = 42 m MAP Winter Meeting, Jefferson Lab, March 2, 2011
‘Droplet’ Arcs scaling – RLA II • Fixed dipole field: Bi = 40.3 kGauss • Quadrupole strength scaled with momentum: Gi = × 1.5 kGauss/cm • Arc circumference increases by: (1+1+5) × 12 m = 84 m MAP Winter Meeting, Jefferson Lab, March 2, 2011
Component Count MAP Winter Meeting, Jefferson Lab, March 2, 2011
Summary • Piece-wise end-to-end simulation with OptiM/ELEGANT (transport codes) • Solenoid linac • Injection chicane I (new more compact design) • RLA I + Injection chicane II + RLA II • Chromaticity correction with sextupoles validated via tracking • Alternative multi-pass linac optics • Currently under study… GPT/G4beamline • End-to-end simulation with fringe fields (sol. & rf cav.) • Engineer individual active elements (magnets and RF cryo modules) MAP Winter Meeting, Jefferson Lab, March 2, 2011
Backup slides MAP Winter Meeting, Jefferson Lab, March 2, 2011
Linac-RLA Acceptance Initial phase-space after the cooling channel at 220 MeV/c bx,y = 2.74 m ax,y = -0.356 bg = 2.08 MAP Winter Meeting, Jefferson Lab, March 2, 2011