700 likes | 1.68k Views
ARMA/ARIMA modeliai . 201 2 -09-20. Literatūra: Asteriou D.Applied Econometrics A Moderm approach using EWievs and Microfit. Palgrave Macmilan, 2008 sk.13 ARIMA Models and Box-Jenkins methotology psl.245-264
E N D
ARMA/ARIMA modeliai 2012-09-20 Literatūra: Asteriou D.Applied Econometrics A Moderm approach using EWievs and Microfit. Palgrave Macmilan, 2008 sk.13 ARIMA Models and Box-Jenkins methotology psl.245-264 Maddala G.S., Kajal Lahiri Introduction to Econometrics., 2010 Chapter 12, psl.481-508 VU EF V.Karpuškienė
Paskaitos dalys • ARIMA modelio struktūra • Modelio įvertinimas: Box-Jenkins procedūra • Stacionarumo užtikrinimas • ARIMA modelio koeficientų įvertinimas • Modelio diagnostika • Arima modelio plėtiniai: ARMAX • Prognozavimas ARIMA modelio pagalba VU EF V.Karpuškienė
ARMA/ARIMA modelio struktūra • ARIMA modelių tikslas – prognozuoti nagrinėjamus ekonominius reiškinius • Pagrindinė idėja – prognozės sudaromos panaudojant nagrinėjamo reiškinio pradinių duomenų ir modelio paklaidų pokyčių ypatumus. VU EF V.Karpuškienė
ARIMA modelio struktūra • ARIMA –Autoregressive Integrated Moving Average Process • ARIMA modelio struktūra: • autoregresinis (AR) procesas • Integravimo (I) procesas • slenkamųjų vidurkių (MA) procesas VU EF V.Karpuškienė
ARMA modelis yt + 1yt-1 +...+ pyt-p +1t-1+ ...+qt-q + t, AR procesas MA procesas Gali būti: yt1yt-1 +...+ pyt-p +1t-1+ ...+qt-q + t, yt +β٠t + 1yt-1 +...+ pyt-p +1t-1+ ...+qt-q + t, VU EF V.Karpuškienė
ARMA/ARIMA modelio struktūraAutoregresinis procesasAR(p) • Autoregresinis procesas aiškina laiko eilutės stebėjimus ankstesniaisiais stebėjimais: Yt =1Yt-1 + 2Yt-2 +...+ pYt-p + t yt –laiko eilutės stebėjimai 1...1 – autoregresinio proceso parametrai t – atsitiktinės paklaidos, p – autoregresinio proceso eilė. VU EF V.Karpuškienė
ARIMA modelio struktūraAutoregresinis procesas Kur L –lago operatorius Lago operatoriaus savybė: VU EF V.Karpuškienė
ARMA/ARIMA modelio struktūraSlenkamųjų vidurkių procesasMA(q) • Slenkamųjų vidurkių procesas aiškina laiko eilutės stebėjimus Yt modelio paklaidomis: Yt=t + 1t-1 + 2t-2 +...+ qt-q VU EF V.Karpuškienė
ARMA/ARIMA modelio struktūraSlenkamųjų vidurkių procesas VU EF V.Karpuškienė
ARMA/ARIMA modelio struktūra ARMA (p,q) modelis Yt =1Yt-1 + 2Yt-2 +...+ pYt-p + t+ 1t-1 + 2t-2 +...+ qt-q VU EF V.Karpuškienė
ARMA/ARIMA modelį galima sudaryti stacionarioms arba silpno stacionarumo laiko eilutėms!!!!!!!!!!!!!!!!! VU EF V.Karpuškienė
Stacionarumas • Griežtas stacionarumas • Silpnas stacionarumas
ARMA/ARIMA modelio griežtas stacionarumas 1) laiko eilutės vidurkis pastovus: E(Yt) =y=const1; (suskaidžius stebėjimus į atskiras grupes, kiekvienos grupės vidurkis turi būti toks pats) 2) laiko eilutės dispersija pastovi: E(Yt-y)2=2y=const2; (kiekvienos grupės dispersija turi būti vienoda) 3) laiko eilutės stebėjimų kovariacija nepriklauso nuo laiko: E[(Yt-y)(Yt-k-y)]=k=const3; VU EF V.Karpuškienė
ARMA/ARIMA modelio silpnas stacionarumas 1) laiko eilutės vidurkis pastovus: E(Yt) =y=const1; (suskaidžius stebėjimus į atskiras grupes, kiekvienos grupės vidurkis turi būti toks pats) 2) laiko eilutės stebėjimų kovariacija nepriklauso nuo laiko: E[(Yt-y)(Yt-k-y)]=k VU EF V.Karpuškienė
Griežtai stacionari laiko eilutė VU EF V.Karpuškienė
Nestacionari laiko eilutėNestacionarumas dėl trendo VU EF V.Karpuškienė
Silpnai stacionari laiko eilutė(Nestacionarumas dėl dispersijos) VU EF V.Karpuškienė
Stacionarumas • Naujos sąvokos • Baltasis triukšmas • Atsitiktinis klaidžiojimas VU EF V.Karpuškienė
Stacionarumas VU EF V.Karpuškienė
Modelio įvertinimas: Box-Jenkins procedūra Pirmas žingsnis: ARMA proceso stacionarumo nustatymas Antras žingsnis: Užtikrinamas stacionarumas integruojant laiko eilutę Trečias žingsnis: ARMA proceso p ir q eilės nustatymas Ketvirtas žingsnis: ARMA modelio ir jo alternatyvų vertinimas Penktas žingsnis: Modelio diagnostika VU EF V.Karpuškienė
Laiko eilutės stacionarumo nustatymas • Grafinė analizė • Autokoreliacijos analizė • Mažiausiosdispersijos testas • Vienetinės šaknies testai (DF (Dickey Fuller) ir ADF VU EF V.Karpuškienė
Laiko eilutės stacionarumo nustatymasACF -Autokoreliacijos analizė kur rk – k-ojo lago autokoreliacijos koeficientas, PAC -Dalinės autokoreliacijos funkcija Dalinės koreliacijos koeficientai yra yt autoregresijos parametrų įverčiaiρi VU EF V.Karpuškienė
Autokoreliacijos analizė Pradinių duomenų ACF Pradinių duomenų PACF VU EF V.Karpuškienė
Autokoreliacijos analizė Nestacionari laiko eilutė VU EF V.Karpuškienė
EViews: View Correlogram VU EF V.Karpuškienė
Stacionari eilutė AC ir PAC VU EF V.Karpuškienė
ARIMA modeliai I(d) – integruotumo eilė • Nestacionari laiko eilutė turi būti transformuojama į stacionarią. Tam paprastai naudojama integravimo procedūra: yt= yt- yt-1. • Jei pirmos eilės skirtumai taip pat nestacionarūs, taikomas antros eilės integravimas (ir t.t.): yt= yt- yt-1= (yt- yt-1) – (yt-1- yt-2) = yt - 2yt-1 + yt-2. • Galima imti ir logaritmų skirtumines transformacijas log(yt) = log(yt)- log(yt-1) VU EF V.Karpuškienė
ARIMA modeliaiIntegruotumo eilės nustatymas • Autokoreliacijos funkcijų analizė • Mažiausiosdispersijos testas • Vienetinės šaknies testai:Dickey Fuller ir ADF testai VU EF V.Karpuškienė
Mažiausios dispersijos testas • Procedūra: • Sudarome tris laiko eilutes: • Yt • Yt=dYt • Yt=d(Yt, 2) • Integravimo eilei nustatyti išrenkame duomenų eilutę su mažiausia dispersija VU EF V.Karpuškienė
Vienetinės šaknies testai • Integruotumo eilei nustatyti dažniausiai naudojami vienetinės šaknies testai • Išplėstinis Dickey-Fuller (augmentedDickey-Fuller) (ADF) • Phillips-Perron testas (PP testas). VU EF V.Karpuškienė
Vienetinės šaknies testai ADF testas • Taikant ADF testą, norint patikrinti, ar kintamasis yt yra stacionarus, sudarome regresiją: • Ši regresija pertvarkoma į tokią: VU EF V.Karpuškienė
Vienetinės šaknies testai ADF testas H0: (kintamasis Ytnėra stacionarus ir yra integruotas bent 1-a eile): H1 : kintamasis Yt yra stacionarus Testo statistika: Išvada: galime atmesti hipotezę H0, jeigu VU EF V.Karpuškienė
ADF testas • Jeigu laiko eilutė yra integruota pirma eile, tikrinama ar ji yra integruota antra eile VU EF V.Karpuškienė
ARMA/ARIMA modelio p ir q vėlavimų eilės nustatymas Nustatyti AR ir MA procesus geriausiai aprašančius (generuojančius) nagrinėjamą reiškinį. Parenkamos kelios alternatyvos • ADF testo pagalba nustatoma integravimo eilė (I) • Nustatoma AR(p) proceso vėlavimo eilė p • Nustatoma MA(q) proceso vėlavimo eilė q VU EF V.Karpuškienė
ARMA/ARIMA modelio p ir q vėlavimų eilės nustatymasAR(p) nustatymas • AR(p) proceso eilė p nustatoma tiriant dalinės autokoreliacijos koeficientus PAC • (dalinės autokoreliacijos koeficientas parodo yt koreliavimą (sąryšį) tik su konkretaus lago (k) Yt-k reikšmėmis, t.y. eliminuojant kitų lagų Yt-i, ik įtaką). • Dalinės koreliacijos koeficientai PAC yra Yt autoregresijos parametrų įverčiai VU EF V.Karpuškienė
ARMA/ARIMA modelio p ir q vėlavimų eilės nustatymasAR(p) nustatymas AR procesui būdinga tai, jog dalinės autokoreliacijos koeficientasPAC p vėlavimų yra didelis (1,...,p), o likusiuose vėlavimuose dalinė autokoreliacija (p+1,...,p) yra nebereikšminga. VU EF V.Karpuškienė
ARMA/ARIMA modelio p ir q vėlavimų eilės nustatymasAR(p) nustatymas AR(1)PAC –dalinės autokoreliacijos grafikas VU EF V.Karpuškienė
ARMA/ARIMA modelio p ir q vėlavimų eilės nustatymas AR(2) PAC – dalinės autokoreliacijos grafikas VU EF V.Karpuškienė
ARMA/ARIMA modelio p ir q vėlavimų eilės nustatymasAR(p) nustatymas • Didėjant vėlavimo periodui k AR(1) proceso autokoreliacijos koeficientasAC eksponentiškai mažėja VU EF V.Karpuškienė
ARMA/ARIMA modelio p ir q vėlavimų eilės nustatymasMA(q) nustatymas • MA proceso eilė nustatoma tiriant autokoreliacijos koeficientus AC • rkkoeficientas parodo Yt bendrą koreliaciją su visais Yt-1,..., Yt-k: VU EF V.Karpuškienė
ARMA/ARIMA modelio p ir q vėlavimų eilės nustatymasMA(q) nustatymas • MA procesui būdinga tai, jog autokoreliacijos koeficientas ACyra didelis q vėlavimų (r1,..., rq). • Likusiuose vėlavimuose autokoreliacija yra nebereikšminga (rq+1,...,rk). VU EF V.Karpuškienė
ARMA/ARIMA modelio p ir q vėlavimų eilės nustatymasMA(q) nustatymas MA(1) AC – Autokoreliacijos grafikas VU EF V.Karpuškienė
ARMA/ARIMA modelio p ir q vėlavimų eilės nustatymasMA(q) nustatymas MA(2) AC – Autokoreliacijos grafikas VU EF V.Karpuškienė
ARMA/ARIMA modelio p ir q vėlavimų eilės nustatymas VU EF V.Karpuškienė
ARMA/ARIMA modelio parametrų (koeficientų) vertinimas • Parametrų įvertinimas: kartu yra vertinami vėluojančių Yt-k kintamųjų ir paklaidų parametrai, todėl naudojamas maksimalaus tikėtinumo metodas, taikant iteracinę optimizavimo procedūrą. • EViews: ls d(Y)=C ar(1) ma(1) VU EF V.Karpuškienė
Regresijos parametrų vertinimo metodai • MKM – rasti tokius parametrų β1,β2 įverčius, kurie minimizuoja modelio paklaidas, t.y atsitiktinę modelio dalį. • MTM – rasti tokius parametrų įverčius β1,β2, kurie maksimizuoja sisteminės dalies ir Yi atitikimo tikimybę
Maksimalaus tikėtinumo metodas Tarkim nagrinėjame porinę priklausomybę, kurios Yt – atsitiktinis dydis pasiskirstęs N(, σ2) Yt=β1 + β2Yt-1+ut MTM – esmė
Maksimalaus tikėtinumo metodas = max Maksimalaus tikėtinumo funkcija
Sudaryto ARMA/ARIMA modelio adekvatumo vertinimas • Vertinimo kriterijai • Modelio paklaidų autokoreliacijos AC grafiko vertinimas • Ljung-Box testas (Q statistika) • R2, adj.R2, AIC ir Schwarz ir kt. determinuotumo kriterijai VU EF V.Karpuškienė
Sudaryto ARMA/ARIMA modelio adekvatumo vertinimasModelio paklaidų AC grafiko vertinimas Nereikšmingos modelio paklaidos EViews: View Correlogram VU EF V.Karpuškienė