1 / 49

Csaba A. Szabo Budapest University of Technology and Economics, Hungary

Business models and technologies for wireless community networks. Csaba A. Szabo Budapest University of Technology and Economics, Hungary and CREATE-NET Research Center, Trento, Italy szabo@hit.bme.hu , cszabo@create-net.org Homepage: www.hit.bme.hu/~szabo. About the presenter.

aiko
Download Presentation

Csaba A. Szabo Budapest University of Technology and Economics, Hungary

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Business models and technologies for wireless community networks Csaba A. Szabo Budapest University of Technology and Economics, Hungary and CREATE-NET Research Center, Trento, Italy szabo@hit.bme.hu, cszabo@create-net.org Homepage: www.hit.bme.hu/~szabo

  2. About the presenter • Professor, Budapest University of Technology and Economics, Hungary • Leading the Laboratory of Multimedia Networks • a range of technical areas related to networked multimedia • computer networks, media technologies, media communications, mobile multimedia, applications incl. telemedicine and e-learning • Also with CREATE-NET, an international research center based in Trento, Italy • Working with a team of researchers at CREATE-NET which participates in the EU project OPAALS • Current research interests include design methodology for wireless community networks, technology, applications and business models for deployment and sustainability

  3. Foreword • Community Networks is a proven approach to provide ubiquitous access, broadband connectivity, a range of important society related and business applications to citizens, institutions and companies in a given geographic area. • Digital Ecosystems is an emerging field with a few pilot projects only at the moment; and the presence of an ubiquitous infrastructure is assumed as granted. • CNs can help introducing DE services and DE services can contribute to CNs sustainability … so that’s why this topic is important within the context of Digital Ecosystems • Wireless and mobile technologies play an increasingly important role in building Community Networks and, consequently, communication infrastructures for digital ecosystems … so that’s why we will focus on wireless CNs • There are two important and inter-related aspects of planning CNs: • how to create a suitable infrastructure – technology planning • how to make it sustainable – choosing appropriate business models … so that’s why this tutorial intends to cover both the technologies and business models

  4. Objective of this tutorial • Give an overview of requirements, services, technologies and business models for Community Networks • Analyze several characteristic examples • From this lecture the participants: • will have a reasonably good understanding of the state-of-the art technologies and the most important business models • will learn from experiences of some case studies • will be provided with guidelines as a starting point for the planning of wireless CNs

  5. Outline • Introduction • What is a Community Network? • Ubiquitous access and CNs • Wireless CN infrastructures • Applications and requirements • Wireless network technologies: Wi-Fi mesh and WiMAX • Design guidelines for wireless CNs • Business models for wireless CNs • Overview of possibilities of public intervention • Main models and examples • Summary

  6. Introduction:Community Networks • Infrastructure and services created with high level of involvement by a community belonging to a specific geographic area • Grassroot origins: “free nets”, “civic nets” • no infrastructure was created • Newer examples of community initiatives: “municipal fiber”, “condominium fiber” • Government initiative and governance • infrastructure is created • most of community networks today are driven by (local) government initiatives, thus a definition for CN can be: • Network infrastructure (mostly wireless), created by some form of public participation plus • the underlying business model plus • the applications and services provided to communities • related terms: • Digital cities, digital communities (Intel), wireless cities, municipal wireless

  7. CNs provide ubiquitous access • NSF on cyber-infrastructures: “Historical infrastructures – the automobile/gasoline/roadway system, electrical grids, railways, telephony, and most recently the Internet – become ubiquitous, accessible, reliable and transparent as they mature.” • True for some historical infrastructures such as electricity networks, road systems, but ubiquitous access and reliability certainly cannot be taken for granted in the case of telecommunication networks and the Internet. • Telecom and internet companies operate according to their business models, the consequence is often the “digital divide”. • In a regional environment, however, it is possible to create network infrastructures which, if properly designed, can provide ubiquitous coverage and accessibility as well as the required degree of reliability plus several more advantages • in particular by using wireless technologies

  8. Wireless community networks: current status (only USA) www.muniwireless.com City Initiatives Directory • ~200 networks in “deployed” or “running” status • ~180 in “in progress”, “negotiating” or “feasibility study” status • Europe: lagging but ambitious objectives • Asia-Pacific: many similar initiatives

  9. Outline • Introduction • What is a Community Network? • Ubiquitous access and CNs • Wireless CN infrastructures • Applications and requirements • Wireless network technologies: Wi-Fi mesh and WiMAX • Design guidelines for wireless CNs • Business models for wireless CNs • Overview of possibilities of public intervention • Main models and examples • Summary

  10. CN Applications A) Access to public information and services • Public Internet kiosks for access to public information, tourism, portals for e-government services and for tourists B) Public safety • Enhancing public safety by remote surveillance of public areas • Improving the communication with police, civilian police, fire department and the like C) Traffic control and transportation • Coping with traffic congestion by vehicle monitoring and intelligent traffic light control • Vehicle management for public transportation (buses) • Intelligent parking systems with flexible payment • Monitoring of road conditions, in particular in winter D) Health care • Improving the efficiency and cost-effectiveness of health care services by broadband and wireless communications among and within health care providers (incl. telemedicine services) • Home health care and assisted living E) Business services • Business partners/providers/clients searching • B2B and B2C transactions • Advertise product and services F) Educational • Internet access, e-learning, administrational portal on the campus and extending educational network to the home G) Utility companies (electricity, water, gas, etc.) • Collecting measurement data and billing information

  11. Wireless cities and their primary applications • Chaska, MN – Digital divide for schools, businesses and residents; • Cheyenne, WY – Traffic signal management; • Corpus Christi, TX – Automated meter reading for utility companies; • Lewis&Clark County, MT– leased line replacement; access to remote county buildings; • Medford, OR – public safety; • Ocean City, MD – Integrated digital, voice and video for city buildings; • Piraí, Brazil – Municipal field-force productivity; • Portsmouth, UK – Bus passenger information dissemination; • San Mateo, CA – Police field-force productivity improvement; • Shanghai, China – Police field-force productivity improvement; • Spokane, WA – Municipal applications and e-Government initiatives; • Westminster, UK – Video surveillance and enhanced security.

  12. Requirement analysis • Community network technology projects should not be technology driven! • Requirements should be derived from applications and services • current planned applications and services • requirements by anchor customers, if exist • plan for potential future services • Examples of requirements that influence the technology design • bandwidth-intensive applications • applications that require quality of service (real-time transmission, delay and loss requirements,…) • portability/mobility needs • interconnection with service providers’ networks is needed

  13. Basic requirements for network and IT infrastructures of CNs • full coverage of the respective territory and ubiquitous access • access from a multiplicity of user devices and platforms • support of mobility • the applications are not supposed to know where the user is • seamless handover even if the user moves through different technologies (a.k.a. vertical handover) • geospatial capabilities • technology is GPS or more recently, WPS (Wi-Fi based positioning service) • quality of service • a certain set of technical parameters • based on these parameters, we can tell what kind of information delivery could be expected from the network • examples are delay, delay variation and loss of information units • classic internet does not provide QoS • service delivery platforms

  14. Available wireless technologies for CNs • Wi-Fi mesh • the well known Wi-Fi (standard-based wireless LAN) combined with the mesh network principle • WiMAX • a relatively new standard-based wireless technology to cover significantly larger area than a LAN – wireless MAN (metro area network), both fixed and mobile • (Cellular mobile)

  15. Wi-Fi mesh networks Wired 802.3 internet AP AP They can remain access points for users but it is better to separate the two functions in two types of nodes/devices Instead of the classical infrastructure-based operation, Wi-Fi access points can play the role of nodes for the mesh network

  16. Mesh nodes for infrastructure and client connectivity internet Service Provider wired network Mesh node Mesh Infrastructure connectivity Client connectivity

  17. Wi-Fi mesh • Wireless mesh network are • peer-to-peer • multi-hop networks, where the nodes cooperate with each other to route information packets through the network • An alternative to “infrastructure based” network where there is a backbone that interconnects all nodes to which the end users are connected • Mesh networks are • “organic”, nodes may be added and deleted freely • fault tolerant, nodes may fail and packets will still be routed • manageable in a distributed way • of high overall capacity • There are also challenges: • if there are too many nodes • if too few nodes • with security • with interoperability

  18. Operation in license-free bands • In mesh architecture, we still use the same license free bands as the plain Wi-Fi (2.4 GHz ISM band, or 5 GHz UNII) • It’s a big advantage, but we should be aware of the consequences Industrial Scientific and Medical Band (IMS) Frequency,GHz 2.483 Unlicenged National Information Infrastructure (UNII) 2.4 New Allocation 5.825 5.725 5.25 5.35 5.15

  19. The throughput issue in a mesh • In the simplest case, every node • acts as an access point and as a forwarding node • The more hops are involved the higher percentage of traffic is dedicated to forwarding • Situation can be improved by using dual radios (one for forwarding and one for client access) • However it is still not a perfect system as the backbone radios also work in contention environment 6.00 1/N (1/2)^N 5.00 4.00 3.00 2.00 1.00 0.00 1 2 3 4 5

  20. What is WiMAX? • From technological point of view: • worldwide accepted standard (developed in IEEE, adopted by ETSI), promoted by WiMAX Forum for Broadband Wireless Access • From users’ point of view: • WiMAX vs Wi-Fi? • WiMAX: also wireless access, like the ubiquitousWi-Fi • as opposed to Wi-Fi’s limited coverage, WiMAX covers larger areas • but WiMAX is not just an upgrade of Wi-Fi!

  21. WiMAX features and advantages • Flexible architecture • p-p, p-mp, ubiquitous • Wide area coverage • up to tens of km in LOS environment • NLOS operation • High capacity and data rates • up to 100 Mbps • High security • AES and 3DES encryption standards • Quality of service • supports real-time data streams • Mobility • the new Mobile WiMAX standard • Easy, quick and inexpensive deployment • Flexibility in spectrum allocation • licensed and license-free frequency bands

  22. 30 10 1 0.1 0.01 0.1 1 10 Area coverage and data rate? WiMAX vs cellular mobile and WiFi Typical range (Km) 2G (GSM) 2.5G (GPRS) 802.16 WiMAX 3G (UMTS) 802.11b 802.11a Typical user data rate (Mbps)

  23. LOS and NLOS operation? Propagation in urban environment red line: direct “visibility, blue lines: reflected waves WiMAX: specific techniques to make use of the reflected waves even if the direct one is missing (no LOS) Propagation in rural environment

  24. Mobility?“Fixed” and “mobile” WiMAX “Fixed WiMAX”: based on IEEE 802.16-2004 standard (approved end of 2004) Commercially available and certified equipment since end of 2005 “Mobile WiMAX”: based on IEEE 802.16e standard (approved end of 2005) First devices in the market in 2008

  25. WiMAX-based services • Telcos carried out many pilot projects worldwide, but have been reluctant to launch commercial services so far • First commercial operator offering mobile WiMAX-based internet-access: Sprint • Sprint’s XOhm service was launched just a week ago (Sep. 29, 2008) in Baltimore, USA, planning to extend it to other cities • WorldMax, The Netherlands • currently nomadic access based on fixed WiMAX • starting from 2H2008, more likely from 2009: mobile WiMAX-based service

  26. WiMAX as a viable solution for developing countries and underserved areas • The new wireless MAN technology is a “professional” one but suitable not only for service providers! • Communities can deploy, too, using either licensed or unlicensed frequency bands • As opposed to fiber or copper based infrastructures, WiMAX requires significantly less investment, offers high flexibility in installation • Many non-profit, government subsidized pilot projects: Iberbanda (Spain), India, Vietnam • Intel co-subsidized projects: • Parintins (Amazonia), Brazil • Ghana • New Zealand

  27. Technology selection • Application requirements • We should analyze the requirements of the applications and services selected in the first step. This analysis should contain coverage, bandwidth and QoS (delay, jitter). • Timeframe • Wi-Fi mesh is available now. No interoperability between different vendors’ mesh products, standard-based products are yet to come. Fixed WiMAX is on the market, but prices will go down. Mobile WiMAX is only coming (as of Fall 2008). • Frequency issue • In many countries or regions, mainly in Europe, it is difficult to obtain licenses required for WiMAX. Using unlicensed ISM band can result in weak QoS and low bandwidth because of disturbance of other devices and providers. • Costs • A careful calculation is needed for each individual project. Equipment price together with the required density of Wi-Fi mesh nodes should be considered vs. number of WiMAX base stations.

  28. Design example to get a feeling of the cost side: a Hungarian „Digital City”

  29. Area to cover

  30. Network topology

  31. Installation costs for 3 scenarios 1) Pilot 2) “Hot places” 3) “Everywhere”

  32. Outline • Introduction • What is a Community Network? • Ubiquitous access and CNs • Wireless CN infrastructures • Applications and requirements • Wireless network technologies: Wi-Fi mesh and WiMAX • Design guidelines for wireless CNs • Business models for wireless CNs • Overview of possibilities of public intervention • Main models and examples • Summary

  33. On business models: level of participation of the public entity

  34. Some basic public/private models (1) 1 Publicly owned and operated 2 Privately owned and operated 3Non-profit owned and operated 4 Publicly owned, privately operated 5 Owned and operated by a public utility 6 Privately owned and operated jointly with the municipality The choice of the appropriate model is influenced by regulatory issues

  35. Some basic public/private models (2) high 1 Public/public 3 Non profit Complexity of management 5 Utility 6 Private/public and administration by the public entity 4 Public/private 2 Private/private high Level of public investment and costs Level of public investment and costs

  36. Some statistical data on municipalities’ involvement in building and operating wireless CNs Municipal Wireless Business Models Report, 2007

  37. Why municipalities build/operate their own network?

  38. Why municipalities do not build/operate their own network?

  39. Main models and examples • 1) The “Wireless Philadelphia” model (“private corporate franchise” model) • Wireless Philadephia • Several other wireless city projects in the USA • Newer attempts (NSW, Australia; Fresno, CA, USA) • 2) “Anchor tenant” model • Corpus Christi, TX, USA • Trentino, Italy • 3) “Communitarian” (grassroot) models • FON • SparkNet, Finland

  40. Model 1“Wireless Philadelphia” • The Wireless Philadelphia initiative started with a pilot, covering the central districts and was expanded to cover the entire metropolitan area with a total 20 million USD investment. • The project was financed and implemented by Earthlink. The business model was based on providing Internet access in the city, as the level of broadband penetration was very low (below 25%) being mainly dial-up access. • Earthlink was also planning to sell bandwidth both to retail and wholesale customers. • The city was planning to subsidize Internet access for low-income residents. • The model failed and after a long period of uncertainty about the future of Wireless Philadelphia Earthlink withdrew. • Why many Type 1 models failed or are in trouble in the USA? • lack of commitment by the city to the service provider • false assumptions, e.g. that free internet access can be financed by advertisements • internet access is not enough, business applications are needed

  41. Model 2Corpus Christi, TX, USA • The largest coastal city in Texas, with about 300,000 inhabitants and a very large territory of suburban character • Key application: Automated Meter Reading (AMR) system for water and gas customers. • The city built a pilot network covering 17 sq. miles and organized a brainstorming with stakeholders which resulted in 20+ application ideas • building inspection (implemented) • health care: electronic health records made available on site • video surveillance • city portal (implemented) • The city extended the network to cover a territory of 147 sq. miles • Access point density is 60-70 per sq. miles in the center and as low as one AP per sq. mile in suburbs. • The city then sold the network to Earthlink • Business model: city pays 500k/yr to Earthlink and saves 300k from AMR only. Earthlink provides advanced internet service to citizens and hosts applications; pays 5% from its profit to city

  42. Model 3Communitarian (grassroot) models • Based on sharing internet connections among the members of the community • FON: “the largest Wi-Fi community in the world” • FON router (La Fonera), Foneros, non-Fonero users • Cooperation with service providers (e.g. British Telecom) • FON communities are growing in: Geneva, Oslo, Munich, Tokyo, New York, San Francisco • Why FON-type models are of interest? • failure of Type1 models in many cities in the USA • lack of public money and/or lack of interest from commercial operators to build CN infrastructures • Can FON-type networks serve as CN infrastructures? Yes and no. • for plain internet access and for applications that do not demand high bandwidth and QoS: yes, but: availability issue • for QoS-demanding applications and services: no • to cover “islands”, “neighborhoods” of a city: yes, provided that internet connection points are available

  43. And here in Finland…

  44. and here in Tampere…

  45. Outline • Introduction • What is a Community Network? • Ubiquitous access and CNs • Wireless CN infrastructures • Applications and requirements • Wireless network technologies: Wi-Fi mesh and WiMAX • Design guidelines for wireless CNs • Business models for wireless CNs • Overview of possibilities of public intervention • Main models and examples • Summary

  46. Summary:Technology and business models • CNs should not be technology driven • Identifying key applications and anchor customers is critical • The specific form of public-private cooperation/partnership depends on • willingness and capabilities of local governments to invest and manage the investment • willingness of market players to become partners • finding business models that satisfies both sides’ interests • Technology planning includes • selection of the most suitable wireless technology • planning methodology for coverage and quality of service is needed

  47. Summary:General conclusions • Ubiquitous network infrastructure created by local government-lead CN projects may facilitate the adaptation of DE services within a specific territory • Community participation may help the adoption of DEs • DEs can add advanced services to CNs thus helping to make the latter sustainable • The many CNs in operation today can be a real playground for implementing DE services • CNs and DEs can be considered as different aspects of regional development strategy and synergy is expected

  48. Some references C. Szabó, I. Chlamtac and E. Bedő, "Design Considerations of Broadband Community Networks," Proceedings of 37th Annual Hawaii Int’l Conf. on System Sciences (CD/ROM), January 5-8, 2004, Computer Society Press, 2004. Ten pages. Chlamtac I., Gumaste A., Szabo C. A., Broadband Services: Business Models and Technologies for Broadband Community Networks, Wiley, 2005. Szabó C. A., Horváth Z. and Farkas K., “Wireless Community Networks: Motivations, Design and Business Models”. Proc. WICON07, Oct 22-24, 2007, Austin, TX, USA. Also in: Mobile Networks and Applications, Springer, 2008. Proc. 2nd Annual European Congress on Wireless & Digital Cities, Cannes, 26 Sep 2007. F. Botto, S. Danzi, E. Salvadori, C. A. Szabo, A. Passani, “Digital Ecosystems and the Trentino Community Network,” OPAALS (EU NoE project) report D7.2, January 2008. K. Farkas, C. Szabo, Z. Horvath, „Planning of Wireless Community Networks”, in: Handbook of Research on Telecommunications Planning and Management for Business, Editor: In Lee, Publisher: Information Science Reference, 2008, to appear.

  49. Thank you for your attention! Questions?

More Related