1 / 18

Exposing C.reinhardtii to Anaerobic Atmospheric Conditions to Enhance Hydrogen Production

Exposing C.reinhardtii to Anaerobic Atmospheric Conditions to Enhance Hydrogen Production. Christina George Period 0,1 Even. Need. http://www.physicalgeography.net/fundamentals/images/co2_atmosphere.jpg. Need. http://www.tspusa.com/images/TICimages/alternativefuels1.gif. Knowledge Base.

Download Presentation

Exposing C.reinhardtii to Anaerobic Atmospheric Conditions to Enhance Hydrogen Production

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Exposing C.reinhardtii to Anaerobic Atmospheric Conditions to Enhance Hydrogen Production Christina George Period 0,1 Even

  2. Need http://www.physicalgeography.net/fundamentals/images/co2_atmosphere.jpg

  3. Need http://www.tspusa.com/images/TICimages/alternativefuels1.gif

  4. Knowledge Base • Anaerobic Conditions: the absence of oxygen http://www.ilmvac.co.uk/content/products/Anaerobic-container-p112555-01.html

  5. Knowledge Base • Sulfur Deprivation: Growing the algae in Sulfur-replete medium or Sulfur-free medium http://www.enasco.com/prod/images/products/8A/VC128314l.jpg

  6. Knowledge Base • Autotrophic organism that produces hydrogen in sulfur deprived anaerobic conditions C.reinahrdtii http://www.sciencedaily.com/images/2009/03/090324171556-large.jpg

  7. Knowledge Base Light intensities v. the CO2 exchange when measured by the photosynthetic rate http://generalhorticulture.tamu.edu/lectsupl/Light/p54f1.gif

  8. Isoamylase • Important enzyme for starch accumulation which is important for hydrogen production (Posewitz, 2005). http://www.mrc-lmb.cam.ac.uk/genomes/date/1bf2.gif

  9. Literature Review • Rosenbaum, Miriam (2005) ‘Utilizing the Green Alga C.reinhardtii for Microbial Electricity Generation” • Direct electricity generation from microbial photosynthetic activity • Oxidative depletion of hydrogen, photosynthetically produced by C.reinahrdtii under sulfur deprived conditions, by polymer coated electro catalytic electrodes

  10. Literature Review • Melis, Anastasios (2000) “Sustained Photobiological Hydrogen Gas Production upon Reversible Inactivation of oxygen Evolution in C.reinhardtii” • As sulfur deprivation increases, so does the hydrogen production

  11. Literature Review • Posewitz, Matthew C. (2004) “Hydrogen Photoproduction is Attenuated by Disruption of an Isoamylase Gene in C.reinhardtii” • Time represents the anaerobic induction time • CC425=C.reinhardtii

  12. Literature Review • Logan, Bruce E. (2006) “Using Algae and other Biomass for Hydrogen Production in a Modified Microbial Fuel Cell” • A small voltage was applied (.25 V) to the algae, which generated pure hydrogen gas at the cathode

  13. Purpose • Therefore, the purpose of this experiment is to find the optimal duration of anaerobic exposure needed to optimize C.reinhardtii hydrogen production

  14. Hypotheses • Alternate: A long period of anaerobic conditions will increase the hydrogen production • Null: The duration and frequency of anaerobic conditions will have no effect on the amount of hydrogen produced

  15. Exposing C.reinhardtiito Anaerobic Atmospheric Conditions to Enhance Hydrogen Production Problem: What is the optimal duration of anaerobic exposure needed to optimize C.reinhardtii hydrogen production? Control Groups: The Algae growth medium, Temperature, and light intensity Independent Variable: Growth of C.reinhardtii and hydrogen produced (original concentration 700mL) Dependent Variable: Carbon dioxide levels, pH levels .5 hours of anaerobic atmospheric conditions Control group of algae will be grown in the airlift bioreactor (700 ml) with no anaerobic or sulfur deprived conditions 3 hours of anaerobic atmospheric conditions 6 hours of anaerobic atmospheric conditions Algae will be grown in designated duration of anaerobic time in an anaerobic container, and will be fertilized with sulfur deprived growth medium (100 mL). -Carbon dioxide concentration measured using a Pasco GLX Xplorer -pH levels measured using pH paper -growth of C.reinhardtii measured using a Spectrophotometer -The hydrogen gas produced will be measured using an H2Scan hydrogen detector. -A fluorometer will be used to measure the photosynthetic rate. All data will statistically analyzed by SPSS, by an ANOVA followed by a Sheffe Post Hoc Test. Data will then be put in line graphs.

  16. Do Ability • C.reinhardtii: Can be grown in the lab as done in previous years • Anaerobic container can be purchased • A hydrogen sensor will be difficult to find at a low cost

  17. Budget

  18. Work Cited • Agency for Science, Technology and Research (A*STAR), Singapore. "Carbon Dioxide Transformed Into Methanol." ScienceDaily 17 April 2009. 23 April 2009 <http://www.sciencedaily.com­ /releases/2009/04/090416102247.htm>. • **“Algae Could One Day Be Major Hydrogen Fuel Source.” Science Daily. April 2, 2008. • American Chemical Society. "'Ice That Burns' May Yield Clean, Sustainable Bridge To Global Energy Future." ScienceDaily 24 March 2009. 23 April 2009 <http://www.sciencedaily.com­ /releases/2009/03/090323143858.htm>. • Basque Research. "Obtaining Bio-gas From Food Industry Waste." ScienceDaily 31 March 2009. 7 May 2009 <http://www.sciencedaily.com­ /releases/2009/03/090331101105.htm>. • **Chisti, Yusuf. “Biodiesel from Microalgae.” Biotechnology Advances. Vol. 25, Pgs. 294-306. February 13, 2007. • CNRS. "Renewable Energies: The Promise Of Organic Solar Cells." ScienceDaily 10 April 2009. 7 May 2009 <http://www.sciencedaily.com­ /releases/2009/04/090409151444.htm>. • DOE/Los Alamos National Laboratory. "New Hope For Biomass Fuels: Breaking The Ties That Bind." ScienceDaily 29 April 2009. 3 May 2009 <http://www.sciencedaily.com­ /releases/2009/04/090422121904.htm>. • **Fouchard, Swanny. "Autotrophic and Mixotrophic Hydrogen Photoproduction in Sulfur Deprived C.Reinhardtii." Applied and Enviornmental Microbiology 71 (2005): 6199-6205. 16 May 2008 <http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1265920&blobtype=pdf> • **Kim Pyo, Jun; et al. “Enhancing hydrogen production by controlling light intensity in sulfur-deprived Chlamydomonas reinhardtii culture.” International Journal of Hydrogen Energy. Vol.31, Pgs. 1585-1590., September 2006. • **Najafpour, G. "Continuous Hydrogen Production via Fermentation of Synthesis Gas." Petroleum and Coal 45 (2003): 154-158. 12 May 2008 <http://www.vurup.sk/pc/vol45_2003/issue3-4/pdf/14.pdf>. • National Institute of Standards and Technology. "Discovery Of An Unexpected Boost For Solar Water-splitting Cells." ScienceDaily 26 April 2009. 3 May 2009 <http://www.sciencedaily.com­ /releases/2009/04/090423105853.htm>. • Natural Environment Research Council. "Plants Absorb More Carbon Dioxide Under Polluted Hazy Skies." ScienceDaily 23 April 2009. 23 April 2009 <http://www.sciencedaily.com­ /releases/2009/04/090422132829.htm>. • Weizmann Institute of Science. "New Way To Split Water Into Hydrogen And Oxygen Developed." ScienceDaily 8 April 2009. 23 April 2009 <http://www.sciencedaily.com­ /releases/2009/04/090406102555.htm>. • **(articles used from last years study)

More Related