120 likes | 256 Views
La Moltiplicazione – Metodo Arabo Step 1 – Elemento base: # • #. Supponiamo di voler eseguire la moltiplicazione: 7 • 8. Costruiamo un quadrato e dopo aver tracciato una diagonale lo ruotiamo in modo che la diagonale sia verticale. 7. 8. 5.
E N D
La Moltiplicazione – Metodo AraboStep 1 – Elemento base: #•# Supponiamo di voler eseguire la moltiplicazione: 7• 8 Costruiamo un quadrato e dopo aver tracciato una diagonale lo ruotiamo in modo che la diagonale sia verticale 7 8 5 Scriviamo i due fattori a fianco dei due lati in alto 6 Scriviamo il prodotto all’interno del quadrato ponendo le UNITÀ nel triangolo di destra e le DECINE in quello di sinistra (se non ci sono, scrivere 0) 7•8=56
9 • 4 = 2 • 3 = 5 • 6 = 9 2 5 4 3 6 3 0 3 6 6 0 La Moltiplicazione – Metodo AraboStep 1 – Elemento base: #•# Ora prova tu, esegui le moltiplicazioni indicate: 9•4=36 2•3=6 5•6=30
a b La Moltiplicazione – Metodo AraboStep 2 – un fattore a due cifre: ##•# o #•## L’esecuzione di moltiplicazioni con un fattore a due cifre, richiede l’utilizzo di DUE elementi base vicini: O La scelta fra a e b dipende dal tipo di moltiplicazione … Secondo VOI quale moltiplicazione richiede la forma a e quale la forma b? 5 • 73 = 35 • 6 = Come procedereste voi nell’eseguire le moltiplicazioni proposte con questo metodo di lavoro?
7 3 3 5 1 5 La Moltiplicazione – Metodo AraboStep 2 – un fattore a due cifre:# • ## 5 • 73 = Disegniamo i due quadrati e scriviamo i due fattori (la freccia indica la direzione nella quale scrivere le cifre) 5 Per ogni quadrato eseguiamo la moltiplicazione tra le due cifre come descritto prima: Nel primo eseguiamo5 • 7 Nel secondo eseguiamo5 • 3 3 6 5 Eseguiamo la somma nelle colonne,3, in cui è risultato suddiviso il rettangolo 5•73=365
5 3 3 0 1 8 La Moltiplicazione – Metodo AraboStep 2 – un fattore a due cifre:## • # 35 • 6 = Disegniamo i due quadrati e scriviamo i due fattori (la freccia indica la direzione nella quale scrivere le cifre) 6 Per ogni quadrato eseguiamo la moltiplicazione tra le due cifre come descritto prima: Nel primo eseguiamo3 • 6 Nel secondo eseguiamo5 • 6 2 1 0 Eseguiamo la somma nelle colonne,3, in cui è risultato suddiviso il rettangolo 35•6=210
99 • 9 = 3 • 29 = 8 • 17 = 9 1 2 0 0 8 9 7 9 8 1 6 2 5 8 6 7 1 La Moltiplicazione – Metodo AraboStep 2 – un fattore a due cifre: ## • #o # • ## Ora prova tu, esegui le moltiplicazioni indicate: 9 3 8 8 9 1 0 8 7 1 3 6 99•9=891 3•29=87 3•17=136
La Moltiplicazione – Metodo AraboStep 3 – entrambi i fattori a due cifre:## • ## Come procedereste VOI per eseguire moltiplicazioni del tipo 35 • 73
5 7 0 1 3 3 3 5 5 9 2 1 La Moltiplicazione – Metodo AraboStep 3 – entrambi i fattore a due cifre:## • ## 35 • 73 = Disegniamo i quattro quadrati come nello schema e scriviamo i due fattori (la frecce indicano la direzione nella quale scrivere le cifre) Nel primo 3 • 7 In ogni quadrato svolgiamo la moltiplicazione tra le due cifre come descritto prima: Nel secondo 5 • 7 Nel terzo 5 • 3 Nel quarto 3 • 3 2 5 5 5 Eseguiamo la somma nelle colonne, 4, in cui è risultato suddiviso il rettangolo 35•73=2555
38 • 21 = 99 • 99 = 9 8 9 2 8 8 0 0 8 1 3 9 1 9 3 1 1 1 6 8 0 8 1 6 La Moltiplicazione – Metodo AraboStep 3 – entrambi i fattore a due cifre:## • ## Ora prova tu, esegui le moltiplicazioni indicate: 0 7 9 8 9 8 0 1
La Moltiplicazione – Metodo AraboStep 4 – caso generale Come procedereste VOI per eseguire moltiplicazioni del tipo 6835 • 724
5 7 2 3 4 8 6 3 2 5 0 3 1 2 1 2 1 2 6 2 5 4 2 1 6 6 0 1 4 0 2 La Moltiplicazione – Metodo AraboStep 4 – caso generale 5 • 7 = 35 6835 • 724 = 3 • 7 = 21 5 • 2 = 10 4948540 8 • 7 = 56 3 • 2 = 06 5 • 4 = 20 0 6 • 7 = 42 3 • 4 = 12 8 • 2 = 16 4 4 6 • 2 = 12 8 • 4 = 32 9 5 6 • 4 = 24 4 8
5 • 7 = 35 3 • 7 = 21 5 • 2 = 10 3 6 0 3 • 2 = 06 8 • 7 = 56 8 • 2 = 16 5 7 6 5 5 7 7 2 2 3 3 5 • 7 = 35 8 8 3 • 7 = 21 5 • 2 = 10 3 1 3 1 1 5 0 2 5 1 0 2 1 1 6 6 6 6 5 0 0 5 6 6 3 • 2 = 06 8 • 7 = 56 2 1 6 5 8 4 5 8 • 2 = 16 1 6 7 0 La Moltiplicazione – Osservazioni 835•72= Eseguiamo ora le tre moltiplicazioni indicate dalle tre coppie di quadrati Sommiamo i tre prodotti mantenendo l’incolonnamento con cui sono stati scritti Prima di procedere al calcolo osserviamo le tre coppie di quadrati individuabili nello schema Notare come il prodotto delle decine risulta spostato di un posto verso sinistra e quello delle centinaia risulta spostato di due posti 5 •72 La coppia BLU è il prodotto: 5(unità)• 72 3 •72 La coppia ROSSA è il prodotto: 3(decine)• 72 8•72 La coppia VERDE è il prodotto: 8 (cent.)• 72 6 0 1 2 0 Eseguiamo ora le due moltiplicazioni indicate dalle due terne di quadrati Notare come il prodotto delle decine risulta spostato di un posto verso sinistra rispetto a quello delle unità Sommiamo i due prodotti mantenendo l’incolonnamento con cui sono stati scritti Prima di procedere al calcolo osserviamo le due terne di quadrati individuabili nello schema 835• 7 Terna ROSSA: prodotto 7(decine)•835 835 •2 Terna BLU: prodotto 2(unità) • 835 6 0 1 2 0