590 likes | 866 Views
Scale model vs. Empire State Building. made by: Hui Ling Luo Wendy Wu Phuong Nguyen Christopher Mejia. Solve the problem. How small is the scale model of the Empire State Building compared to the original?.
E N D
Scale modelvs.Empire State Building made by: Hui Ling Luo Wendy Wu Phuong Nguyen Christopher Mejia
Solve the problem How small is the scale model of the Empire State Building compared to the original?
Information If the Empire State Building is about 1,200 feet and the scale model is 1/800 of that.
What to know to get started • How to write a proportion • How to solve a proportion • Measurements
Process To Solve Part A - Step 1 Write the proportion Height of scale model = part of scale model Height of building part of scale model h = 1 1200 800
Part B Step 2 Cross multiply Solving the proportion hx1 800 h x 800 1200 x 1 800h = 1200
Part B – Step 3 Divide the number next to the variable on both sides h = 1 • 800 h x 800 1200 x 1 800h =1200 800 800 h= 1.5 • Height of scale model is 1.5
What Have We Learned ? How to write a proportion How to solve a proportion Compare scale model to its original
closing Credits Special thanks to Ms. Dargan And Ms. Lewis For helping
It’s 10 pm, Do you know where your car is? Presentation by: Simon Huang, Kenneth Chong, Junaid Qaiser & Tommy Tieu Of Class 730 Pershing JHS February 2005
Here’s the Problem! Out of 500 cars, 20 people forget where they park their cars. What percent of people forget where they park their cars?
Here’s another problem! How many people forget where they parked their cars?
What we need to how?How to make a proportion • Know the whole • Know the part • Know the percent • Put part over whole, and percent over 100
How to make a percent: • Make a fraction • Divide the fraction • Turn the decimal into a percent
Answer to Number 1 20 = .04 = 4% 500 Out of 500 cars, 20 people forget where they park their car. What percent is that? • In order to find the percent 20 out of 500 • We need to divide and turn them into a decimal • It is .04, and you move the decimal 2 place to the right which is 4%.
Answer to Number 2 How many people forget where they parked their cars? 20 = P 200 = 100 P= % of people who forgot to park their car. • In order to make a proportion. You need to know what your trying to find out • You have to find out the whole and the part. You have to put the percent over 100.
DISCOVERY • 4% of people forgot where they park • 20 people forgot where they parked out of 500 • 10% forgot where they parked their car
Credits • Thanks to the group leader Tommy • The typists are Simon, Kenneth • Mad props to the cheerleader, mascot, JUNAID! • NO THANKS TO MS.DARGAN
Barry and Steve Gots what you need! By: Viviana, Melissa, Erin, and Joanna
Pick a Store any Store • Julie was a smart shopper. The pairs of shoes she wanted had an original price of $50 at both Barry’s and Steve’s. The shoes had been in both stores for 2 months.
Help Julie • How much would Julie pay for the shoes at Barry’s? At Steve’s?
Barry’s store • Barry’s Bargain Basement Sale Everything is a bargain!! All items are marked with an arrival date. 1 Month old, 10% off the original price! 2 Months old, 20% off the original price!
Steve’s Store • Steve’s Super Savings Store • We Won’t be undersold • All items are marked with an arrival date. • If it’s been here 1 month, take 10% off! • If its been here for 2 months take another 20% off the already reduced price!
Process To SolveSteve 10% +20%=30%off Steve’s Turn percent to a decimal. Move it 2 spaces to the left. Next Multiply 50*.30=15.00 Subtract discount from original price: 50-15=$35 5
Barry’s • Turn percent to a decimal. Move it 2 spaces to the left. • Next multiply $50*.20=$10.00 • Subtract discount from original prize: $50-$20=$40
In conclusion: • At Steve’s you will pay $35 for a pair of shoes • At Barry’s you will pay $40 for a pair of shoes • Now that you graduated buy a pair of shoes
What have you learned • My group has learned that if we wanted to buy shoes we should go to Steve’s Super savings store than Barry’s Bargain Basement Sale.
Credits • We want to thank Ms.Dargan for all of her hard work and for putting up with us • Producers Joanna, Melissa, Erinn, Viviana • Special thanks to are parent’s for bringing us to this world love u mom! • & Melissa wants to give a special thanks to Ashton Kutcher and Joanna wants to thank 50cent for inspiration we love you
Cooking With Math! Chocolate Turtle Cheesecake Presented By- Annie Li Elaine Chang Joseph Serrano Patrick Ozga
The Problem How much of each ingredient will you need to serve 30 people?
What do you need to know? • To solve this problem we made a proportion. _ingredient_ = X serving12 X serving30 people 12 30 • Ingredients/people x/12=x/30
How Do We Cook? • Serves for 12 • 1 package of caramels • ¼ cup evaporated milk • ¾ cup of copped pecans • 1 chocolate crumb piecrust • 2 packages cream cheese • ½ cup sour cream • 1 ¼ cup milk • 1 package chocolate instant pudding mix • ½ cup fudge topping End of part 1
Part 2 • Divide 30 by 12 • Get the answer of 2.5 • Now multiply every ingredient by 2.5 Ex: 1.0 X 2.5= 2.50 Serves for 30 2.5 packages .625 cup 1.875 cups 2.5 chocolate 5 packages 1.25 cups 3.125 cups 2.5 packages 1.25 cups
What Did We Learn? We learned that proportions makes solving recipes easier. We also learned that doing group work is a a lot fun!!!!
End Credits Thanks to our wonderful teacher Ms.Dargan
Similar Triangles Presented By: Thomas, Joseph, Kevin and certainly least Heriberto.
Our problem Joe says that these triangles aren’t similar. Sue disagrees she says they are similar. Find out which is correct. 3cm 5cm 9cm 15cm 4cm 12cm
Need To Know • Similar figures are figures that have the same shape. • Proportion are when two ratios are equal they form a proportion. • Write a proportion for the two triangles third the symbol to show that two triangles are similar.
Process To Solve To Solve 9cm 15cm 3cm 5cm 4cm 12cm Sue is correct Give each side a letter B E A C D F then write a proportion A C D F 12 4 since 12 3*4 the ratios are equal and = = = = the triangles are similar A B D E 9 3 9 3*3
What have we learned • We have learned that similar triangles have sides that are proportional. • We learned that we have to use proportion to figure out if the two triangles are similar.
Closing Credit • Most Credit to three people Thomas the team leader, Kevin the smartest, and Joseph T. • Some credit to our doggie mascot Heriberto for…… something. • No credit to Ms. Dargan for making us do work. • Final credit to Chris for bothering us a lot!
Do You Like Basketball? Waz’up basketball fans! Me and my team R ready 2 solve a big problem in basketball history. Get ready to know amazing facts about The COOLEST Sport in the WORLD!
How many more games,Coach? • The problem so far is that Round Lake Middle School team won 80% of their games last year. This year the team played 5 games and won 3.The team has to play a total of 20 games this season.
How Many More Games,Coach? (part 2) How many more games must the team win to equal last year’s record?
How Many More Games ,Coach? (part 3) Let’s Find Out!!!
Game Records • Turn the percent to a fraction . • How many games needed to win out of a total of 20 games. • How many games already won.
HALF TIME • Turn 80% of 20 games into fraction in simplest form. 80% over 100% equals 4 over 5. • Solve the proportion 4 over 5 equal n over 20. 4/5=n/20
Half Time (Part 2) Find out how many games already won this year. 3 Subtract total games won this year from total games won last year. KEEP GOING!
HALF TIME (Part 3) • 16-3=13 • Thirteen games needed to win. • ALMOST THERE !