1.08k likes | 1.45k Views
CARDIOVASCULAR PHYSIOLOGY. Dr. Poland Room 3-007, Sanger Hall Phone: 828-9557 E-mail: poland@hsc.vcu.edu. HEART (PUMP). AUTOREGULATION. CARDIOVASCULAR SYSTEM. NEURAL. REGULATION. HORMONAL. VESSELS (DISTRIBUTION SYSTEM). RENAL-BODY FLUID CONTROL SYSTEM. PULMONARY CIRCULATION.
E N D
CARDIOVASCULAR PHYSIOLOGY Dr. Poland Room 3-007, Sanger Hall Phone: 828-9557 E-mail: poland@hsc.vcu.edu
HEART (PUMP) AUTOREGULATION CARDIOVASCULAR SYSTEM NEURAL REGULATION HORMONAL VESSELS (DISTRIBUTION SYSTEM) RENAL-BODY FLUID CONTROL SYSTEM
PULMONARY CIRCULATION 1. LOW RESISTANCE 2. LOW PRESSURE (25/10 mmHg) SYSTEMIC CIRCULATION 1. HIGH RESISTANCE 2. HIGH PRESSURE (120/80 mmHg) PARALLEL SUBCIRCUITS UNIDIRECTIONAL FLOW
ARTERIES (LOW COMPLIANCE) HEART DIASTOLE VEINS CAPACITY VESSELS 80 mmHg 120 mmHg SYSTOLE CAPILLARIES
THE SYSTEMIC CIRCULATION CAPACITY VESSELS
AUTOMATICITY Na+ K+ Gradually increasing PNa K+ Na+ -0 -70 mV THRESHOLD RESTING
Atrio-ventricular (AV) node Sino-atrial (SA) node BUNDLE BRANCHES PURKINJE FIBERS
PACEMAKERS (in order of their inherent rhythm) • Sino-atrial (SA) node • Atrio-ventricular (AV) node • Bundle of His • Bundle branches • Purkinje fibers
PHASE Mechanical Response 0 = Rapid Depolarization (inward Na+ current) 1 1 = Overshoot 2 0 2 = Plateau (inward Ca++ current) 3 = Repolarization (outward K+ current) 0 MEMBRANE POTENTIAL (mV) 4 = Resting Potential 3 4 -90 TIME
ACTION POTENTIALS VENTRICULULAR CELL SAN 1 2 0 0 0 3 0 3 4 -50 -50 MEMBRANE POTENTIAL (mV) 4 -100 -100
SINGLE VENTRICULAR ACTION POTENTIAL ENDOCARDIAL FIBER ATRIAL FIBER EPICARDIAL FIBER R 1 mV ECG T P Repolarization of ventricles Q S Depolarization of ventricles Depolarization of atria
ECG Recordings (QRS Vector pointing leftward, inferiorly & posteriorly) 3 Bipolar Limb Leads: RA LA I = RA vs. LA (+) LL
ECG Recordings (QRS Vector pointing leftward, inferiorly & posteriorly) 3 Bipolar Limb Leads: RA LA I = RA vs. LA (+) II = RA vs. LL (+) LL
ECG Recordings (QRS Vector pointing leftward, inferiorly & posteriorly) 3 Bipolar Limb Leads: RA LA I = RA vs. LA (+) II = RA vs. LL (+) III = LA vs. LL (+) LL
ECG Recordings (QRS Vector pointing leftward, inferiorly & posteriorly) 3 Bipolar Limb Leads: RA LA I = RA vs. LA (+) II = RA vs. LL (+) III = LA vs. LL (+) 3 Augmented Limb Leads: LL aVR = (LA-LL) vs. RA(+)
ECG Recordings (QRS Vector pointing leftward, inferiorly & posteriorly) 3 Bipolar Limb Leads: RA LA I = RA vs. LA (+) II = RA vs. LL (+) III = LA vs. LL (+) 3 Augmented Limb Leads: LL aVR = (LA-LL) vs. RA(+) aVL = (RA-LL) vs. LA(+)
ECG Recordings (QRS Vector pointing leftward, inferiorly & posteriorly) 3 Bipolar Limb Leads: RA LA I = RA vs. LA (+) II = RA vs. LL (+) III = LA vs. LL (+) 3 Augmented Limb Leads: LL aVR = (LA-LL) vs. RA(+) aVL = (RA-LL) vs. LA(+) aVF = (RA-LA) vs. LL(+)
6 PRECORDIAL (CHEST) LEADS Spine V6 V5 Sternum V4 V3 V1 V2
ECG Recordings: (QRS vector---leftward, inferiorly and posteriorly 3 Bipolar Limb Leads I = RA vs. LA(+) II = RA vs. LL(+) III = LA vs. LL(+) 3 Augmented Limb Leads aVR = (LA-LL) vs. RA(+) aVL = (RA-LL) vs. LA(+) aVF = (RA-LA) vs. LL(+) 6 Precordial (Chest) Leads: Indifferent electrode (RA-LA-LL) vs. chest lead moved from position V1 through position V6.
THE CARDIAC CYCLE LATE DIASTOLE DIASTOLE ISOMETRIC VENTRICULAR RELAXATION ATRIAL SYSTOLE VENTRICULAR EJECTION ISOMETRIC VENTRICULAR CONTRACTION
EJECTION ISOVOLUMETRIC CONTRACTION ISOVOLUMETRIC RELAXATION RAPID INFLOW DIASTASIS ATRIAL SYSTOLE AORTIC PRESSURE PRESSURE (mmHg) ATRIAL PRESSURE VENTRICLE PRESSURE VOLUME (ml) ECG PHONO- CARDIOGAM SYSTOLE DIASTOLE SYSTOLE
MEASUREMENT OF CARDIAC OUTPUT THE FICK METHOD: VO2 = ([O2]a - [O2]v) x Flow Spirometry (250 ml/min) VO2 [O2]a - [O2]v Flow = Pulmonary Artery Blood (15 ml%) Arterial Blood (20 ml%) CARDIAC OUTPUT PULMONARY BLOOD FLOW VENOUS RETURN PERIPHERAL BLOOD FLOW
. VO2 [O2]a - [O2]v CARDIAC OUTPUT (Q) = 250 ml/min 20 ml% - 15 ml% = = 5 L/min . Q = HR x SV . . Q m2 body surface area Q HR CARDIAC INDEX = SV = 5 L/min 70 beats/min = 5 L/min 1.6 m2 = = 0.0714 L or 71.4 ml = 3.1 L/min/m2
THE HEART AS A PUMP • REGULATION OF CARDIAC OUTPUT • Heart Rate via sympathetic & parasympathetic nerves • Stroke Volume • Frank-Starling “Law of the Heart” • Changes in Contractility • MYOCARDIAL CELLS (FIBERS) • Regulation of Contractility • Length-Tension and Volume-Pressure Curves • The Cardiac Function Curve
Autoregulation (Frank-Starling “Law of the Heart”) CARDIAC OUTPUT = STROKE VOLUME x HEART RATE Contractility Sympathetic Nervous System Parasympathetic Nervous System
CARDIAC MUSCLE - Functional Syncytium - Automaticity STRIATED MUSCLE SKELETAL MUSCLE - Motor Units - Stimulated by Motor Nerves
STRUCTURE OF A MYOCARDIAL CELL Sarcolemma Mitochondria T-tubule SR Fibrils
SARCOLEMMA 10% Mitochondria 20% 80% T-tubule Ca++ SR THICK MYOFILAMENT THIN MYOFILAMENT
REGULATAION OF CONTRACTILITY • Recruitment of motor units • Increase frequency of firing of motor nerves • Calcium to trigger contraction
INCREASING HEART RATE INCREASES CONTRACTILITY Ca++ Ca++ Normal Heart Rate Fast Heart Rate Ca++ Ca++ Ca++ Ca++
SERIES ELASTIC ELEMENTS CONTRACTILE COMPONENT (ACTIVE TENSION) PARALLEL ELASTIC ELEMENTS (PASSIVE TENSION) TOTAL TENSION
LENGTH-TENSION CURVE TOTAL TENSION ACTIVE TENSION TENSION PASSIVE TENSION OPTIMAL LENGTH (Lo) EQUILIBRIUM LENGTH RESTING LENGTH LENGTH LENGTH
TENSION SARCOMERE LENGTH ()
CARDIAC MUSCLE TOTAL TENSION ACTAIVE TENSION TENSION PASSIVE TENSION MUSCLE LENGTH
HEART SYSTOLIC PRESSURE CURVE Isotonic (Ejection) Phase After-load Isovolumetric Phase PRESSURE Stroke Volume DIASTOLIC PRESSURE CURVE Pre-load End Systolic Volume End Diastolic Volume
HEART INCREASED CONTRACTILITY SYSTOLIC PRESSURE CURVE Isotonic (Ejection) Phase After-load Isovolumetric Phase PRESSURE Stroke Volume DIASTOLIC PRESSURE CURVE Pre-load End Systolic Volume End Diastolic Volume
HEART DECREASED CONTRACTILITY SYSTOLIC PRESSURE CURVE Isotonic (Ejection) Phase After-load Isovolumetric Phase PRESSURE Stroke Volume DIASTOLIC PRESSURE CURVE Pre-load End Systolic Volume End Diastolic Volume
HEART INCREASED FILLING SYSTOLIC PRESSURE CURVE Isotonic (Ejection) Phase After-load Isovolumetric Phase PRESSURE Stroke Volume DIASTOLIC PRESSURE CURVE Pre-load End Systolic Volume End Diastolic Volume
CARDIAC FUNCTION CURVE Cardiac Output = Stroke Volume x Heart Rate Constant If: STROKE VOLUME Then: CO reflects SV DIASTOLIC FILLING Right Atrial Pressure (RAP) reflects Diastolic Filling
CARDIAC FUNCTION CURVE THE FRANK- STARLING “LAW OF THE HEART” 15- 10- CARDIAC OUTPUT (L/min) Pressure 5- Volume -4 0 +4 +8 RAP mmHg
CARDIAC FUNCTION CURVE THE FRANK- STARLING “LAW OF THE HEART” 15- Increased Contractility 10- CARDIAC OUTPUT (L/min) 5- -4 0 +4 +8 RAP mmHg
CARDIAC FUNCTION CURVE THE FRANK- STARLING “LAW OF THE HEART” 15- Decreased Contractility 10- CARDIAC OUTPUT (L/min) 5- -4 0 +4 +8 RAP mmHg
CARDIAC FUNCTION CURVE THE FRANK- STARLING “LAW OF THE HEART” 15- Increased Heart Rate 10- CARDIAC OUTPUT (L/min) 5- -4 0 +4 +8 RAP mmHg
CARDIAC FUNCTION CURVE THE FRANK- STARLING “LAW OF THE HEART” 15- Decreased Heart Rate 10- CARDIAC OUTPUT (L/min) 5- -4 0 +4 +8 RAP mmHg
P1 > P2 P1 FLOW P2 mm Hg P = FLOW x R P R FLOW = P FLOW R = L/min or ml/sec mm Hg ml/sec Peripheral Resistance Units (PRU)
LAMINAR or STREAMLINE FLOW P1 P2 P1 > P2 -Cone Shaped Velocity Profile -Not Audible with a Stethoscope
MEASURING BLOOD PRESSURE TURBULENT FLOW 1. Cuff pressure > systolic blood pressure--No sound. 2. The first sound is heard at peak systolic pressure. 3. Sounds are heard while cuff pressure < blood pressure. 4. Sound disappears when cuff pressure < diastolic pressure.
RESISTANCES IN SERIES RT = RA + RC + RV RESISTANCES IN PARALLEL FlowT = Flow1 + Flow2 + Flow3 P RT P R1 P R2 P R3 = + + R1 PV PA 1 RT 1 R1 1 R2 1 R3 R2 = + + R3 1 RT = 1 R1 1 R2 1 R3 + +