1 / 42

Air Pollution and Public Health

Air Pollution and Public Health. Limited time, we will discuss: Asthma Ischemic Stroke Otitis Media Myocardial Infarction. Co-Authors for many projects. Leonard Bielory, MD Van Dunn, MD MPH Susan Meehan RPh William Gauff, EMT Yu-Feng Chan, MD Hosseinali Shahidi, MD MPH

albert
Download Presentation

Air Pollution and Public Health

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Air Pollution and Public Health • Limited time, we will discuss: • Asthma • Ischemic Stroke • Otitis Media • Myocardial Infarction

  2. Co-Authors for many projects • Leonard Bielory, MD • Van Dunn, MD MPH • Susan Meehan RPh • William Gauff, EMT • Yu-Feng Chan, MD • Hosseinali Shahidi, MD MPH • Ronald B. Low MD

  3. Most Data from New York City • Hospital data available to me now from NYC Health and Hospitals Corporation (HHC) • Pollution data from EPA • Weather data from NWS • Pollen data from Dr. Bielory • NJ, NYC Issues pretty much the same • Inferred NJ calculations

  4. Similar atmospheric Conditions: NJ & NYC • Weather • Pollution • Pollens: Only measured in NJ

  5. NOx: NY and NJ • Not as close as temperature, but clearly related (p<.0001) • The closer to NYC, the tighter the relationship • Generally, NJ levels only slightly lower than NYC levels: both 0.01-0.20 ppm

  6. Asthma • One of the most studied diseases related to air pollution • Our model is conservative, ascribing changes in asthma rates to: • Time (seasons) • Then weather and airborne allergens • Last pollution effects

  7. Basic Statistics • NJ: 16,390 admissions in 2003 • HHC: 15,914 admission in 2003 • HHC: 59,865 ED Visits for asthma in 2003

  8. Other effects • Confounded with temperature, hard to show graphically in 3 or more dimensions

  9. Model • Time modeled first: Autoregressive effects of 1,2 and 7 days earlier; moving average effects of 6 and 365 days earlier • 4 visits/day increase with weed pollen count increase of 1000 • 100 more URI visits1 more asthma • 10μg/m3 particles<10μ, 2 more visits

  10. Rough estimate of the effect small particles on NJ asthma • Assuming causality • Conservative Model • 900 additional admissions in 2003 • 3000 additional ED Visits in 2003

  11. Ischemic Stroke • Not as seasonal/time dependent as asthma • Weekly effect and holiday effects. Conservatively, we adjust for them before looking for a pollution effect.

  12. Ischemic Stroke • NJ 2003: • 21,899 Admissions for all ischemic events • NYC study average 9.34 strokes/day*2556 days. In 2003: • 2615 Admissions for all ischemic events • 1338 Ischemic Strokes • Entire 8 year NYC: 23,888 ischemic strokes

  13. Weekend, Holiday Effects • Holiday=New Years, Martin Luther King, President’s Day, Easter, Memorial Day, July 4, Labor Day, Thanksgiving, Christmas • Average 0.9 fewer strokes (0.7-1.3) on weekends (p<0.0001) • Average 1.1 fewer strokes (0.5-1.6) on holidays, p=.0002

  14. White Stroke and Pollution • Probably a real NOx effect, p=0.0455. • Best modeled as a logarithmic effect (Normality) • Average effect 0.47 strokes/day, 2118 strokes during study, adjusted for weekends, holidays and temperature • Assuming causality, ESTIMATED 2003 NJ effect: 1,900 strokes; 95th % 112 strokes

  15. Otitis Media • Like asthma, seasonal and weekly effects • We looked at clinic visits as well as ED visits • Again, we model conservatively

  16. Otitis visits: Basic Statistics • HHC: • 809,252 visits during study • Average 181/day (lots of seasonal variability) • 2003: 55,533 visits • NJ: We do not have outpatient data

  17. Otitis Model • Except for NOx, I will not discuss coefficients: Log transform makes interpretation difficult • Temperature: lower is worse, p=0.0144 • Weekends better than weekdays, p<.0001 • Holidays better than workdays, p<.0001 • 365 day seasonal pattern, p<.0001 • URIs make otitis worse, p<.0001

  18. Effect of NOx on NJ Otitis • The log*log effect means that high levels are more problematic than low levels • Assuming Causality: Lowering NOx to low levels should reduce OMV visits by between 2% to 8%, depending on starting levels and other assumptions.

  19. Model Works Prospectively

  20. Myocardial Infarction • NJ in 2003: 22,464 • HHC: • in 2003: 2,623 • Entire study: 22,371 (very close to NJ 2003)

  21. MI Model • No significant seasonal effect • Worse on weekdays (p<.0001) • Worse as temperature drops, p<.0001 • No significant snow effect • Curvilinear exacerbating effect of NOx, worse at highest levels, p=0.0051. The effect is statistically small except until around the top 5th% (>.14ppm). Difficult to accurately estimate effect.

  22. Reservations • Observational Studies • Limited to temperature and pollutant ranges we observed • Diagnostic accuracy dependent upon clinicians and coders • Pollutants co-correlated with each other, with weather, seasons, ?weekday traffic • These studies do not prove causality • Pollutant effects may be underestimated, they were always added last to model

  23. Overall Conclusions • Air pollution, at current levels, has some measurable relationship to asthma, otitis media, ischemic strokes and MI. • NOx and suspended particles have the most widespread associations. • If you assume causality, the health effects are significant

  24. Questions?

More Related