500 likes | 681 Views
History of IGM. Epoch of Reionization (EoR). bench-mark in cosmic structure formation indicating the first luminous structures. z=5.80. z=5.82. z=5.99. z=6.28. The Gunn Peterson Effect. Fast reionization at z =6.3 => opaque at l _obs <0.9 m m. f(HI) > 0.001 at z = 6.3.
E N D
History of IGM Epoch of Reionization (EoR) • bench-mark in cosmic structure formation indicating the first luminous structures
z=5.80 z=5.82 z=5.99 z=6.28 The Gunn Peterson Effect Fast reionization at z=6.3 => opaque at l_obs<0.9mm f(HI) > 0.001 at z = 6.3 Fan et al 2003
Neutral IGM evolution (Gnedin 2000): ‘Cosmic Phase transition’ HI fraction Ionizing intensity Density Gas Temp 8 Mpc (comoving) Normalization: GP absorption, LCDM + z=4 LBGs, T_IGM
WMAP Large scale polarization of CMB (Kogut et al.) • Large scale structure (10’s deg) = Thompson scattering at EoR • t_e =Ln_es_e = 0.17 => F(HI) < 0.5 at z=20 GP + WMAP => Reionization Process is complex, extending from z~20-6? (200-800 Million years after Big Bang)
Near-edge of reionization: GP Effect Fan et al. 2002 Fairly Fast: • f(HI) > 1e-3 at z >= 6.4 (0.87Gyr) • f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr) • Problem: t_Lya >> 1 for f(HI) > 0.001
Complex reionization example: Double reionization? (Cen 2002) Pop III stars in ‘mini-halos’ (<1e7 M_sun) ‘normal’ galaxies (>1e8M_sun)
Radio astronomical probes of the Epoch of Reionization and the 1st luminous objects Objects within EoR – Molecular gas, dust, star formation Neutral IGM – HI 21cm emission and absorption Collaborators USA – Carilli, Walter, Fan, Strauss, Owen, Gnedin, Djorgovski Euro – Bertoldi, Menten, Cox, Omont, Beelen SKA ‘level 0’ science team – Briggs, Carilli, Furlanetto, Gnedin
MAMBO + IRAM 30m Max-Planck Bolometer array: 133 pixel bolometer camera at 300mK, single mode horns (Kreysa) Wide fieldimaging and photometry at 250 GHz rms < 0.5 mJy, res=10.6”, field sizes >= 30’
Very Large Array 1. Wide-field imaging at 1.4 GHz: rms=7uJy, 1” res, FoV=30’ Astrometry => avoid confusion Imaging => AGN vs. Starburst, Lensing? cm-to-mm SEDs => redshifts, star formation rates unhindered by dust 2. Low order CO transitionsat 20 to 50 GHz: rms < 0.1 mJy, res << 1” Gas excitation and mass estimates Gas distribution and dynamics, Lensing?
Plateau de Bure Interferometer Imaging high order CO lines at 90 to 230 GHz: rms < 0.5 mJy, res < 1” (15% of collecting area of ALMA)
Magic of (sub)mm 350 GHz 250 GHz L_FIR = 4e12 x S_250(mJy) L_sun for z=0.5 to 8 SFR = 1400 x S_250 M_sun/yr M_dust = 1.4e8 x S_250 M_sun
High redshift QSOs SDSS + DPOSS: 700 at z > 4 30 at z > 5 7 at z > 6 M_B < -26 => L_bol > 1e14 L_sun M_BH > 1e9 M_sun Hunt 2001
QSO host galaxies – M_BH – s relation • Most (all?) low z spheroidal galaxies have SMBH • M_BH = 0.002 M_bulge • ‘Causal connection between SMBH and spheroidal galaxy formation’ (Gebhardt et al. 2002)? • Luminous high z QSOs have massive host galaxies (1e12 M_sun)
MAMBO surveys of z>2 DPSS+SDSS QSOs 1148+52 z=6.4 1e13L_sun 1048+46 z=6.2 Arp220 • 30% of luminous QSOs have S_250 > 2 mJy, independent of redshift from z=1.5 to 6.4 • L_FIR =1e13 L_sun = 0.1 x L_bol: Dust heating by starburst or AGN?
L_FIR vs L’(CO) Index=1 1e11 M_sun Index=1.7 • M(H_2) = X * L’(CO), X=4 (Milkyway), X=0.8 (ULIRGs) • Telescope time: t(dust) = 1hr, t(CO) = 10hr
Objects within EoR: QSO 1148+52 at z=6.4 • highest redshift quasar known • L_bol = 1e14 L_sun • central black hole: 1-5 x 109 Msun(Willotetal.) • clear Gunn Peterson trough (Fan etal.)
1148+52 z=6.42: MAMBO detection S_250 = 5.0 +/- 0.6 mJy => L_FIR = 1.2e13 L_sun, M_dust =7e8 M_sun 3’ +
VLA Detection of Molecular Gas at z=6.419 50 MHz ‘channels’ (320 kms-1, Dz=0.008) noise: ~57 mJy, D array, 1.5” beam 46.6149 GHz CO 3-2 Off channels • M(H_2) = 2e10 M_sun • Size < 1.5” (image), • Size > 0.2” (T_B/50K)^-1/2
IRAM Plateau de Bure confirmation n2 (6-5) (7-6) (3-2) • FWHM = 305 km/s • z = 6.419 +/- 0.001 • Tkin=100K, nH2=105cm-3
VLA imaging of CO3-2 at 0.5” and 0.15” resolution rms=50uJy at 47GHz • Separation = 0.3” = 1.7 kpc • T_B = 20K = T_B (starburst) • Merging galaxies? • Or Dissociation by QSO? • CO extended to NW by 1” (=5.5 kpc) tidal(?) feature • T_B = 3 K = Milky way
Phase stability: Fast switching at the VLA 10km baseline rms = 10deg
1148+52: starburst+AGN? S_1.4= 55 +/- 12 uJy IRAS 2Jy sample (Yun+) 1048+46 1148+52 • SFR(>5 M_sun) = 1400 M_sun/year => host spheroid formation in 5e7 yrs at z > 6? • SMBH formation: n x 2.4e7 yr (Loeb, Wyithe,…) => Coeval formation of galaxy/SMBH at z>6?
1148+52: Masses • M(dust) = 7e8 M_sun • M(H_2) = 2e10 M_sun • M_dyn (r=2kpc) = 4e10 (sin i)-2 M_sun • M_BH = 3e9 M_sun M_BH–s => M_bulge = 1.5e12 M_sun • Gas/dust = 30, typical of starburst • Dynamical vs. gas mass => baryon dominated? • Dynamical vs. ‘bulge’ mass => M – s breaks-down at high z? Or face-on (i < 9deg)?
Cosmic (proper) time 1/16 T_univ
1148+52: Timescales • Age of universe: 8.7e8 yr • C, O production (3e7 M_sun): 1e8 yr • Fe production (SNe Ia): few e8 yr (Maiolino, Freudling) • Dust formation: 1.4e9yr (AGB winds) => dust formed in high mass stars/SNR (Dunne et al.. 2003)? => silicate grains? => Star formation started early (z > 10)?
Cosmic Stromgren Sphere • Accurate redshiftfrom CO: z=6.419 optical high ionization lines can be off by 1000s km s-1 • Proximity effect:photons leaking from 6.32<z<6.419 z=6.32 White et al. 2003 • Ionized sphere around QSO: R = 4.7 Mpc ‘time bounded’ Stromgren sphere: t_qso= 1e5 R^3 f(HI)= 1e7yrs
Constraints on neutral fraction at z=6.4 • GP => f(HI) > 0.001 • If f(HI) = 0.001, then t_qso = 1e4 yrs – implausibly short? (see also J1030+0524 z=6.28, J1048+46 z=6.23 using MgII lines) • Probability arguments suggest: f(HI) > 0.1 at z=6.4 – much better limit than GP Wyithe and Loeb 2003 f_lt = 1e7 yr
Gravitational Lensing? • CO 3-2 double source, 0.3” separation => strong lensing? • Keck near IR imaging: point source < 0.5” at K (Djorgovski) • HST/ACS imaging: point source < 0.3” (Richards 2004) • Radio continuum: Foreground cluster (30x over-density) at z=0.05 => magnification by 2x? 1148+5251
Near-edge of reionization: GP + Strom. Spheres Fan et al. 2002 Very Fast? • f(HI) > 1e-1 at z >= 6.4 (0.87Gyr) • f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr)
Gas and dust in the first galaxies • Luminous (star forming?) galaxy: Far IR luminosity = 1e13 Lsun at z=6.42 • Merging(?) galaxy: Molecular gas mass = 2x1010 M_sun, M_dyn = 4e10 (sin i)-2 M_sun • Early enrichment of heavy elements and dust produced in the first stars => star formation commenced at 0.4 Gyr after the big bang • Coeval formation of SMBH + stars in earliest galaxies (break-down of M-s at high z?) • Cosmic Stromgren sphere of 4.7 Mpc => ‘witnessing process of reionization’ t_qso = 1e7 * f(HI) yrs ‘fast’ reionization: f(HI)>0.1 at z=6.4?
J1048+4637: A second FIR-luminous QSO source at z=6.2 3.0 +/- 0.4 mJy => L_FIR = 7.5e12 L_sun M_dust = 4e8 M_sun
Cloverleaf z=2.56, Grav. Lens mag. 11x VLA detection of HCN emission at 22 GHz => n(H_2) > 1e5 cm^-3 (vs. CO n(H_2) > 1e4 cm^-3) (Solomon, vd Bout, Carilli)
Sensitivity of future arrays: Arp 220 vs z (FIR = 1e12 L_sun) ALMA 1hr EVLA 100hr
Redshifts for obscured/faint sources: wide band (16 - 32 GHz) spectrometers on LMT/GBT (Min Yun 2004) L_FIR = 1e13 L_sun
Z=10 lensed star forming galaxy? (Pello 2004) L_app= 4e11 L_sun + LBG dust correction (5x) => L_FIR = 2e12L_sun S_250 = 0.6 mJy => 5s ALMA detection in 1 minute! S (CO 4-3 at 42 GHz) = 0.06 mJy => 5s EVLA detection in 15hr
Studying the pristine IGM beyond the EOR: HI 21cm observations with the Square Kilometer Array and LOFAR SKA: A/T = 20000 m^2/K => mJy at 200 MHz
Low frequency background – hot, confused sky Eberg 408 MHz Image (Haslam + 1982) Coldest regions: T = 200 (n/200 MHz)^2.6 K
Global HI signature in low frequency spectra (Gnedin & Shaver 2003) 21cm ‘fluctuations’ at 1e-4 wrt foreground fast double
HI 21cm Tomography of IGM Zaldarriaga + 2003 z=12 9 7.6 • DT_B(2’) = 10’s mK • SKA rms(100hr) = 4mK • LOFAR rms (1000hr) = 80mK
Power spectrum analysis Zaldarriaga + 2003 Z=10 129 MHz PAST LOFAR SKA 2deg 1arcmin
Cosmic Webafter reionization = Ly alpha forest (d <= 10) 1422+23 z=3.62 Womble 1996 N(HI) = 1e13 -- 1e15 cm^-2, f(HI/HII) = 1e-5 -- 1e-6 => Before reionization N(HI) =1e18 – 1e21 cm^-2
Cosmic web before reionization: HI 21cm Forest (Carilli, Gnedin, Owen 2002) 20mJy Z=10 • SKA ‘observations’ of 21cm absorption before the EOR (A/T = 2000 m^2/K, 240hrs, 1kHz) • Mean optical depth (z = 10) = 1% = ‘Radio Gunn-Peterson effect’ • Narrow lines (t= few %, few km/s) = HI 21cm forest (d <= 10), 10/unit z at z=8 • Mini-halos (d >= 100) (Furlatto & Loeb 2003) • Primordial disks: low cosmic density (0.001/unit z), but high opacity => fainter radio sources (GRBs?) Z=8
Radio sources beyond the EOR? • Radio loud QSO fraction = 10% to z=5.8 (Petric + 2003) • Models => expect 0.05 to 0.5 deg^-2 at z> 6 with S_151 > 6 mJy (out of 100 total) Haiman & Hui 2004 1.4e5 at z > 6 S_151 > 6mJy 2240 at z > 6 Carilli + 2002
Terrestrial interference 100 MHz 200 MHz GMRT 230 MHz 0924-220 z=5.2
GMRT 230 MHz 0924-220 z=5.2 • Continuum point source = 0.55 Jy • Noise limited spectra: s=5.5 mJy/channel • HI 21cm absorption at z=5.200? t = 4%, Dv = 130 km/s N(HI) = 9e20 (Ts/100K) cm^-2
SKA timeline • 2004 Science case: “Science with the SKA” Carilli & Rawlings, New Astron. Rev. • 2004-7 demonstrator development major external review (2006) submit funding proposals for a 5% demonstrator • 2006 site selection: Autralia, USA-SW, South Africa, China • 2008 selection of technical design (may be a combination); start construction of 5% demonstrator on chosen site • 2009 submit funding proposals for full array • 2012 start construction • 2020 complete construction Projected cost: 1 G$
Radio astronomy – Probing the EoR • Study physics of the first luminous sources (limited to near-IR to radio wavelengths) • Currently limited to pathological systems (‘HLIRGs’) • EVLA and ALMA 10-100x sensitivity is critical for study of ‘normal’ galaxies • SKA is the only means to study the neutral IGM z=6.4
Ultimate goal: Far side of the moon? • No RFI • No ionosphere • Cheap, ‘dirty’ antennas • No moving parts 130MHz