1 / 53

History of IGM

History of IGM. ionized. C.Carilli (NRAO) CfA Sept 2004. neutral. Epoch of Reionization (EoR). bench-mark in cosmic structure formation indicating the first luminous structures. ionized. z=5.80. z=5.82. z=5.99. z=6.28. The Gunn Peterson Effect.

Download Presentation

History of IGM

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. History of IGM ionized C.Carilli (NRAO) CfA Sept 2004 neutral Epoch of Reionization (EoR) • bench-mark in cosmic structure formation indicating the first luminous structures ionized

  2. z=5.80 z=5.82 z=5.99 z=6.28 The Gunn Peterson Effect Fast reionization at z=6.3 => opaque at l_obs<0.9mm f(HI) > 0.001 at z = 6.3 Fan et al 2003

  3. Neutral IGM evolution (Gnedin 2000): ‘Cosmic Phase transition’ at z=6 to 7 Log (HI fraction) Ionizing intensity Density Gas Temp 8 Mpc (comoving) Normalization: GP absorption, LCDM + z=4 LBGs, T_IGM

  4. WMAP Large scale polarization of CMB (Kogut et al.) 20deg Thompson scattering at EoR t_e = 0.17=> F(HI) < 0.5 at z=17 Extended period of reionization: z=6 to 15?

  5. Near-edge of reionization: GP Effect Fan et al. 2002 Fairly Fast: • f(HI) > 1e-3 at z >= 6.4 (0.87Gyr) • f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr)

  6. Complex reionization example: Double reionization? (Cen 2002) Pop III stars in ‘mini-halos’ (<1e7 M_sun) ‘normal’ galaxies (>1e8M_sun)

  7. Limitations of current measurements:CMB polarization: -- t_e= Ln_es_e = integral measure through universe=> allows many reionization scenariosGunn-Peterson effect: --t_Lya >>1 for f(HI)>0.001-- High z universe is opaque to optical observers

  8. Radio astronomical probes of the Epoch of Reionization and the 1st luminous objects CMB large scale polarization Objects within EoR – Molecular gas, dust, star formation Neutral IGM – HI 21cm emission and absorption Collaborators USA – Carilli, Walter, Fan, Strauss, Owen, Gnedin Euro – Bertoldi, Cox, Menten, Omont, Beelen SKA Key Program science team– Briggs, Carilli, Furlanetto, Rawlings Science with the Square Kilometer Array (NAR, Carilli & Rawlings) http://www.aoc.nrao.edu/~ccarilli/CHAPS.shtml

  9. IRAM 30m + MAMBO: sub-mJy sens at 250 GHz + wide fields • IRAM PdBI: sub-mJy sens at 90 and 230 GHz + arcsec resol. • VLA: uJy sens at 1.4 GHz • VLA: < 0.1 mJy sens at 20-50 GHz + 0.2” resol.

  10. Magic of (sub)mm L_FIR = 4e12 x S_250(mJy) L_sun for z=0.5 to 8

  11. High redshift QSOs SDSS + DPOSS: 700 at z > 4 30 at z > 5 9 at z > 6 M_B < -26 => L_bol > 1e14 L_sun M_BH > 1e9 M_sun York et al 2001; Fan et al

  12. QSO host galaxies – M_BH – s relation • Most (all?) low z spheroidal galaxies have SMBH • M_BH = 0.002 M_bulge • ‘Causal connection between SMBH and spheroidal galaxy formation’ (Gebhardt et al. 2002)? • Luminous high z QSOs have massive host galaxies (1e12 M_sun)

  13. MAMBO surveys of z>2 DPSS+SDSS QSOs 1148+52 z=6.4 1e13L_sun 1048+46 z=6.2 Arp220 • 30% of luminous QSOs have S_250 > 2 mJy, independent of redshift from z=1.5 to 6.4 • L_FIR =1e13 L_sun = 0.1 x L_bol: Dust heating by starburst or AGN?

  14. L_FIR vs L’(CO) High-z sources 1e3 M_sun/yr Index=1 1e11 M_sun Index=1.7 • M(H_2) = X * L’(CO), X=4 (Milkyway), X=0.8 (ULIRGs) • Telescope time: t(dust) = 1hr, t(CO) = 10hr

  15. Objects within EoR: QSO 1148+52 at z=6.4 • highest redshift quasar known • L_bol = 1e14 L_sun • central black hole: 1-5 x 109 Msun(Willotetal.) • clear Gunn Peterson trough (Fan etal.)

  16. 1148+52 z=6.42: MAMBO detection S_250 = 5.0 +/- 0.6 mJy => L_FIR = 1.2e13 L_sun, M_dust =7e8 M_sun 3’ +

  17. VLA Detection of Molecular Gas at z=6.419 50 MHz ‘channels’ (320 kms-1, Dz=0.008) noise: ~57 mJy, D array, 1.5” beam 46.6149 GHz CO 3-2 Off channels • M(H_2) = 2e10 M_sun • Size < 1.5” (image), • Size > 0.2” (T_B/50K)^-1/2

  18. IRAM Plateau de Bure confirmation n2 (6-5) (7-6) (3-2) • Tkin=100K, nH2=105cm-3 • FWHM = 305 km/s • z = 6.419 +/- 0.001 Typical of starburst nucleus

  19. VLA imaging of CO3-2 at 0.4” and 0.15” resolution rms=50uJy at 47GHz • Separation = 0.3” = 1.7 kpc • T_B = 20K = T_B (starburst) • Merging galaxies? • Or Dissociation by QSO? • CO extended to NW by 1” (=5.5 kpc) tidal(?) feature

  20. Phase stability: Fast switching at the VLA 10km baseline rms = 10deg

  21. 1148+5251: radio-FIR SED Beelen et al. S_1.4= 55 +/- 12 uJy 1048+46 T_D = 50 K • Star forming galaxy characteristics: radio-FIR SED, L’_CO/FIR, CO excitation and T_B => Coeval starburst/AGN: SFR = 1000 M_sun/yr • Stellar spheroid formation in few e7 yrs = e-folding time for SMBH • => Coeval formation of galaxy/SMBH at z = 6.4 ?

  22. 1148+52: Masses • M(dust) = 7e8 M_sun • M(H_2) = 2e10 M_sun • M_dyn (r=2.5kpc) = 5e10 M_sun • M_BH = 3e9 M_sun => M_bulge = 1.5e12 M_sun • Gas/dust = 30, typical of starburst • Dynamical vs. gas mass => baryon dominated? • Dynamical vs. ‘bulge’ mass => M – s breaks-down at high z?

  23. Cosmic (proper) time 1/16 T_univ = 0.87Gyr

  24. 1148+52: Timescales • Age of universe: 8.7e8 yr • C, O production (3e7 M_sun): 1e8 yr • Fe production (SNe Ia): few e8 yr (Maiolino, Freudling) • Dust formation: 1.4e9yr (AGB winds) => dust formed in high mass stars/SNR (Dunne et al.. 2003)? => silicate grains? => Star formation started early (z > 10)?

  25. Cosmic Stromgren Sphere • Accurate redshiftfrom CO: z=6.419+/0.001 Ly a, high ioniz. Lines: uncertainty >1000km/s (Dz=0.03) • Proximity effect:photons leaking from 6.32<z<6.419 White et al. 2003 z=6.32 • ‘time bounded’ Stromgren sphere: R = 4.7 Mpc t_qso= 1e5 R^3 f(HI)= 1e7yrs

  26. Richards et al. 2002 SDSS QSOs

  27. Loeb & Rybicki 2000

  28. Constraints on neutral fraction at z=6.4 • GP => f(HI) > 0.001 • If f(HI) = 0.001, then t_qso = 1e4 yrs – implausibly short given fiducial lifetime, f_lt = 1e7 years? • Probability arguments suggest: f(HI) > 0.1 at z=6.4 – much better limit than GP Wyithe and Loeb 2003

  29. z>6 QSOs with MgII and/or CO redshifts (Walter et al, Willot et al., Maiolino et al., <Dz> = 0.08 => <R> = 4.4 Mpc

  30. Near-edge of reionization: GP + Cosmic Stromgren Spheres Very Fast? • f(HI) > 1e-1 at z >= 6.4 (0.87Gyr) • f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr) See also Cosmic Stromgren Surfaces (Mesinger & Haiman 2004)

  31. Gas and dust during the EoR • FIR luminous galaxy at z=6.42: 1e13 Lsun observe dust, gas, star formation, AGN • Merging(?) galaxy: Molecular gas mass = 2x1010 M_sun, M_dyn = 6e10 M_sun • Early enrichment of heavy elements and dust produced in the first stars => star formation commenced at 0.4 Gyr after the big bang • Coeval formation of SMBH + stars in earliest galaxies – break-down of M-s at high z? • Cosmic Stromgren sphere of 4.7 Mpc => ‘witnessing process of reionization’ t_qso = 1e7 * f(HI) yrs ‘fast’ reionization: f(HI)>0.1 at z=6.4?

  32. J1048+4637: A second FIR-luminous QSO source at z=6.2 MAMBO 250 GHz VLA CO 3-2 S_250 = 3.0 +/- 0.4 mJy => L_FIR = 7.5e12 L_sun z(opt) z(MgII) • S(CO 3-2) = 0.17 +/- 0.09 mJy • EVLA correlator: 8GHz, 16000 channels

  33. VLA detections of HCN 1-0 emission n(H_2) > 1e5 cm^-3 (vs. CO: n(H_2) > 1e3 cm^-3) z=4.7 z=6.4 index=1 Solomon et al z=2.58 70 uJy

  34. Continuum sensitivity of future arrays: Arp 220 vs z (FIR = 1.6e12 L_sun) cm: Star formation, AGN (sub)mm Dust, molecular gas ConX: AGN Near-IR: Stars, ionized gas, AGN

  35. Studying the pristine IGM beyond the EOR: redshifted HI 21cm observations (100 – 200 MHz) with the Square Kilometer Array.‘Pathfinders’: LOFAR, MWA, PAST, VLA-VHF,… Large scale structure: density, f(HI), T_spin SKA goal: mJy at 200 MHz

  36. Low frequency background – hot, confused sky Eberg 408 MHz Image (Haslam + 1982) Coldest regions: T = 100 (n/200 MHz)^2.6 K Highly ‘confused’: 3 sources/arcmin^2 with S_0.2 > 0.1 mJy

  37. Terrestrial interference 100 MHz z=13 200 MHz z=6

  38. Temperatures: Spin, CMB, Kinetic and the 21cm signal Dt = 10mK z = 11 z = 7 Tozzi + 2002 T_s T_CMB T_K • Initially T_S= T_CMB • T_S couples to T_K via Lya scattering • T_K = 0.026 (1+z)^2 (wo. heating) • T_CMB = 2.73 (1+z) • T_S = T_CMB => no signal • T_S = T_K < T_CMB => Absorption against CMB • T_S > T_CMB => Emission

  39. Global reionization signature in low frequency HI spectra (Gnedin & Shaver 2003) fast 21cm ‘deviations’ at 1e-4 wrt foreground double Spectral index deviations of 0.001

  40. HI 21cm Tomography of IGM Zaldarriaga + 2003 z=12 9 7.6 • DT_B(2’) = 10’s mK • SKA rms(100hr) = 4mK • LOFAR rms (1000hr) = 80mK

  41. Power spectrum analysis Zaldarriaga + 2003 Z=10 129 MHz LOFAR SKA 1arcmin 2deg

  42. Cosmic Webafter reionization = Ly alpha forest (d <= 10) 1422+23 z=3.62 Womble 1996 N(HI) = 1e13 -- 1e15 cm^-2, f(HI/HII) = 1e-5 -- 1e-6 => Before reionization N(HI) =1e18 – 1e21 cm^-2

  43. Cosmic web before reionization: HI 21cm Forest (Carilli, Gnedin, Owen 2002) 20mJy Z=10 • Mean optical depth (z = 10) = 1% = ‘Radio Gunn-Peterson effect’ • Narrow lines (t= few %, few km/s) = HI 21cm forest (d <= 10), 10/unit z at z=8 • Mini-halos (d >= 100) (Furlanetto & Loeb 2003) • Primordial disks: low cosmic density=0.001/unit z, but high opacity=> fainter radio sources -- GRBs? Radio sources beyond the EOR? • Radio loud QSO fraction = 10% to z=5.8 (Petric + 2003) • Models => expect 0.05 to 0.5 deg^-2 at z> 6 with S_151 > 6 mJy, out of 100 total (Carlli,Jarvis,Haiman) Z=8

  44. GMRT 228 MHz search for HI21cm abs toward highest z radio galaxy, 0924-220 z=5.2 8GHz 1” Van Breugel et al. z(CO) 230Mhz Continuum point source = 0.55 Jy; rms/(40km/s chan) = 5 mJy

  45. GMRT 230 MHz 0924-220 z=5.2 channel 20 (229.60MHz)

  46. ‘Pathfinders’: PAST, LOFAR, MWA, VLA-VHF, … MWA prototype (MIT/ANU) LOFAR (NL) PAST (CMU/China) VLA-VHF (CfA/NRAO)

  47. VLA-VHF: 180 – 200 MHz Prime focus X-dipole (Greenhill et al – proposed) Leverage: existing telescopes, IF, correlator, operations

  48. Main Experiment: Cosmic Stromgren spheres around z>6 SDSS QSOs (Wyithe & Loeb 2004) VLA-VHF 190MHz 250hrs 20mK 15’ 0.50+/-0.12 mJy VLA spectral/spatial resolution well matched to expected signal: 5’, 1000 km/s

  49. Other Experiments: power spectrum analysis, ‘HI 21cm forest’ • Sensitivity per 0.8MHz channel: currently have 16 channels over 12.5 MHz • Piggy-back on CSS experiment • Centrally condensed uv coverage

More Related