530 likes | 648 Views
History of IGM. ionized. C.Carilli (NRAO) CfA Sept 2004. neutral. Epoch of Reionization (EoR). bench-mark in cosmic structure formation indicating the first luminous structures. ionized. z=5.80. z=5.82. z=5.99. z=6.28. The Gunn Peterson Effect.
E N D
History of IGM ionized C.Carilli (NRAO) CfA Sept 2004 neutral Epoch of Reionization (EoR) • bench-mark in cosmic structure formation indicating the first luminous structures ionized
z=5.80 z=5.82 z=5.99 z=6.28 The Gunn Peterson Effect Fast reionization at z=6.3 => opaque at l_obs<0.9mm f(HI) > 0.001 at z = 6.3 Fan et al 2003
Neutral IGM evolution (Gnedin 2000): ‘Cosmic Phase transition’ at z=6 to 7 Log (HI fraction) Ionizing intensity Density Gas Temp 8 Mpc (comoving) Normalization: GP absorption, LCDM + z=4 LBGs, T_IGM
WMAP Large scale polarization of CMB (Kogut et al.) 20deg Thompson scattering at EoR t_e = 0.17=> F(HI) < 0.5 at z=17 Extended period of reionization: z=6 to 15?
Near-edge of reionization: GP Effect Fan et al. 2002 Fairly Fast: • f(HI) > 1e-3 at z >= 6.4 (0.87Gyr) • f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr)
Complex reionization example: Double reionization? (Cen 2002) Pop III stars in ‘mini-halos’ (<1e7 M_sun) ‘normal’ galaxies (>1e8M_sun)
Limitations of current measurements:CMB polarization: -- t_e= Ln_es_e = integral measure through universe=> allows many reionization scenariosGunn-Peterson effect: --t_Lya >>1 for f(HI)>0.001-- High z universe is opaque to optical observers
Radio astronomical probes of the Epoch of Reionization and the 1st luminous objects CMB large scale polarization Objects within EoR – Molecular gas, dust, star formation Neutral IGM – HI 21cm emission and absorption Collaborators USA – Carilli, Walter, Fan, Strauss, Owen, Gnedin Euro – Bertoldi, Cox, Menten, Omont, Beelen SKA Key Program science team– Briggs, Carilli, Furlanetto, Rawlings Science with the Square Kilometer Array (NAR, Carilli & Rawlings) http://www.aoc.nrao.edu/~ccarilli/CHAPS.shtml
IRAM 30m + MAMBO: sub-mJy sens at 250 GHz + wide fields • IRAM PdBI: sub-mJy sens at 90 and 230 GHz + arcsec resol. • VLA: uJy sens at 1.4 GHz • VLA: < 0.1 mJy sens at 20-50 GHz + 0.2” resol.
Magic of (sub)mm L_FIR = 4e12 x S_250(mJy) L_sun for z=0.5 to 8
High redshift QSOs SDSS + DPOSS: 700 at z > 4 30 at z > 5 9 at z > 6 M_B < -26 => L_bol > 1e14 L_sun M_BH > 1e9 M_sun York et al 2001; Fan et al
QSO host galaxies – M_BH – s relation • Most (all?) low z spheroidal galaxies have SMBH • M_BH = 0.002 M_bulge • ‘Causal connection between SMBH and spheroidal galaxy formation’ (Gebhardt et al. 2002)? • Luminous high z QSOs have massive host galaxies (1e12 M_sun)
MAMBO surveys of z>2 DPSS+SDSS QSOs 1148+52 z=6.4 1e13L_sun 1048+46 z=6.2 Arp220 • 30% of luminous QSOs have S_250 > 2 mJy, independent of redshift from z=1.5 to 6.4 • L_FIR =1e13 L_sun = 0.1 x L_bol: Dust heating by starburst or AGN?
L_FIR vs L’(CO) High-z sources 1e3 M_sun/yr Index=1 1e11 M_sun Index=1.7 • M(H_2) = X * L’(CO), X=4 (Milkyway), X=0.8 (ULIRGs) • Telescope time: t(dust) = 1hr, t(CO) = 10hr
Objects within EoR: QSO 1148+52 at z=6.4 • highest redshift quasar known • L_bol = 1e14 L_sun • central black hole: 1-5 x 109 Msun(Willotetal.) • clear Gunn Peterson trough (Fan etal.)
1148+52 z=6.42: MAMBO detection S_250 = 5.0 +/- 0.6 mJy => L_FIR = 1.2e13 L_sun, M_dust =7e8 M_sun 3’ +
VLA Detection of Molecular Gas at z=6.419 50 MHz ‘channels’ (320 kms-1, Dz=0.008) noise: ~57 mJy, D array, 1.5” beam 46.6149 GHz CO 3-2 Off channels • M(H_2) = 2e10 M_sun • Size < 1.5” (image), • Size > 0.2” (T_B/50K)^-1/2
IRAM Plateau de Bure confirmation n2 (6-5) (7-6) (3-2) • Tkin=100K, nH2=105cm-3 • FWHM = 305 km/s • z = 6.419 +/- 0.001 Typical of starburst nucleus
VLA imaging of CO3-2 at 0.4” and 0.15” resolution rms=50uJy at 47GHz • Separation = 0.3” = 1.7 kpc • T_B = 20K = T_B (starburst) • Merging galaxies? • Or Dissociation by QSO? • CO extended to NW by 1” (=5.5 kpc) tidal(?) feature
Phase stability: Fast switching at the VLA 10km baseline rms = 10deg
1148+5251: radio-FIR SED Beelen et al. S_1.4= 55 +/- 12 uJy 1048+46 T_D = 50 K • Star forming galaxy characteristics: radio-FIR SED, L’_CO/FIR, CO excitation and T_B => Coeval starburst/AGN: SFR = 1000 M_sun/yr • Stellar spheroid formation in few e7 yrs = e-folding time for SMBH • => Coeval formation of galaxy/SMBH at z = 6.4 ?
1148+52: Masses • M(dust) = 7e8 M_sun • M(H_2) = 2e10 M_sun • M_dyn (r=2.5kpc) = 5e10 M_sun • M_BH = 3e9 M_sun => M_bulge = 1.5e12 M_sun • Gas/dust = 30, typical of starburst • Dynamical vs. gas mass => baryon dominated? • Dynamical vs. ‘bulge’ mass => M – s breaks-down at high z?
Cosmic (proper) time 1/16 T_univ = 0.87Gyr
1148+52: Timescales • Age of universe: 8.7e8 yr • C, O production (3e7 M_sun): 1e8 yr • Fe production (SNe Ia): few e8 yr (Maiolino, Freudling) • Dust formation: 1.4e9yr (AGB winds) => dust formed in high mass stars/SNR (Dunne et al.. 2003)? => silicate grains? => Star formation started early (z > 10)?
Cosmic Stromgren Sphere • Accurate redshiftfrom CO: z=6.419+/0.001 Ly a, high ioniz. Lines: uncertainty >1000km/s (Dz=0.03) • Proximity effect:photons leaking from 6.32<z<6.419 White et al. 2003 z=6.32 • ‘time bounded’ Stromgren sphere: R = 4.7 Mpc t_qso= 1e5 R^3 f(HI)= 1e7yrs
Richards et al. 2002 SDSS QSOs
Constraints on neutral fraction at z=6.4 • GP => f(HI) > 0.001 • If f(HI) = 0.001, then t_qso = 1e4 yrs – implausibly short given fiducial lifetime, f_lt = 1e7 years? • Probability arguments suggest: f(HI) > 0.1 at z=6.4 – much better limit than GP Wyithe and Loeb 2003
z>6 QSOs with MgII and/or CO redshifts (Walter et al, Willot et al., Maiolino et al., <Dz> = 0.08 => <R> = 4.4 Mpc
Near-edge of reionization: GP + Cosmic Stromgren Spheres Very Fast? • f(HI) > 1e-1 at z >= 6.4 (0.87Gyr) • f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr) See also Cosmic Stromgren Surfaces (Mesinger & Haiman 2004)
Gas and dust during the EoR • FIR luminous galaxy at z=6.42: 1e13 Lsun observe dust, gas, star formation, AGN • Merging(?) galaxy: Molecular gas mass = 2x1010 M_sun, M_dyn = 6e10 M_sun • Early enrichment of heavy elements and dust produced in the first stars => star formation commenced at 0.4 Gyr after the big bang • Coeval formation of SMBH + stars in earliest galaxies – break-down of M-s at high z? • Cosmic Stromgren sphere of 4.7 Mpc => ‘witnessing process of reionization’ t_qso = 1e7 * f(HI) yrs ‘fast’ reionization: f(HI)>0.1 at z=6.4?
J1048+4637: A second FIR-luminous QSO source at z=6.2 MAMBO 250 GHz VLA CO 3-2 S_250 = 3.0 +/- 0.4 mJy => L_FIR = 7.5e12 L_sun z(opt) z(MgII) • S(CO 3-2) = 0.17 +/- 0.09 mJy • EVLA correlator: 8GHz, 16000 channels
VLA detections of HCN 1-0 emission n(H_2) > 1e5 cm^-3 (vs. CO: n(H_2) > 1e3 cm^-3) z=4.7 z=6.4 index=1 Solomon et al z=2.58 70 uJy
Continuum sensitivity of future arrays: Arp 220 vs z (FIR = 1.6e12 L_sun) cm: Star formation, AGN (sub)mm Dust, molecular gas ConX: AGN Near-IR: Stars, ionized gas, AGN
Studying the pristine IGM beyond the EOR: redshifted HI 21cm observations (100 – 200 MHz) with the Square Kilometer Array.‘Pathfinders’: LOFAR, MWA, PAST, VLA-VHF,… Large scale structure: density, f(HI), T_spin SKA goal: mJy at 200 MHz
Low frequency background – hot, confused sky Eberg 408 MHz Image (Haslam + 1982) Coldest regions: T = 100 (n/200 MHz)^2.6 K Highly ‘confused’: 3 sources/arcmin^2 with S_0.2 > 0.1 mJy
Terrestrial interference 100 MHz z=13 200 MHz z=6
Temperatures: Spin, CMB, Kinetic and the 21cm signal Dt = 10mK z = 11 z = 7 Tozzi + 2002 T_s T_CMB T_K • Initially T_S= T_CMB • T_S couples to T_K via Lya scattering • T_K = 0.026 (1+z)^2 (wo. heating) • T_CMB = 2.73 (1+z) • T_S = T_CMB => no signal • T_S = T_K < T_CMB => Absorption against CMB • T_S > T_CMB => Emission
Global reionization signature in low frequency HI spectra (Gnedin & Shaver 2003) fast 21cm ‘deviations’ at 1e-4 wrt foreground double Spectral index deviations of 0.001
HI 21cm Tomography of IGM Zaldarriaga + 2003 z=12 9 7.6 • DT_B(2’) = 10’s mK • SKA rms(100hr) = 4mK • LOFAR rms (1000hr) = 80mK
Power spectrum analysis Zaldarriaga + 2003 Z=10 129 MHz LOFAR SKA 1arcmin 2deg
Cosmic Webafter reionization = Ly alpha forest (d <= 10) 1422+23 z=3.62 Womble 1996 N(HI) = 1e13 -- 1e15 cm^-2, f(HI/HII) = 1e-5 -- 1e-6 => Before reionization N(HI) =1e18 – 1e21 cm^-2
Cosmic web before reionization: HI 21cm Forest (Carilli, Gnedin, Owen 2002) 20mJy Z=10 • Mean optical depth (z = 10) = 1% = ‘Radio Gunn-Peterson effect’ • Narrow lines (t= few %, few km/s) = HI 21cm forest (d <= 10), 10/unit z at z=8 • Mini-halos (d >= 100) (Furlanetto & Loeb 2003) • Primordial disks: low cosmic density=0.001/unit z, but high opacity=> fainter radio sources -- GRBs? Radio sources beyond the EOR? • Radio loud QSO fraction = 10% to z=5.8 (Petric + 2003) • Models => expect 0.05 to 0.5 deg^-2 at z> 6 with S_151 > 6 mJy, out of 100 total (Carlli,Jarvis,Haiman) Z=8
GMRT 228 MHz search for HI21cm abs toward highest z radio galaxy, 0924-220 z=5.2 8GHz 1” Van Breugel et al. z(CO) 230Mhz Continuum point source = 0.55 Jy; rms/(40km/s chan) = 5 mJy
GMRT 230 MHz 0924-220 z=5.2 channel 20 (229.60MHz)
‘Pathfinders’: PAST, LOFAR, MWA, VLA-VHF, … MWA prototype (MIT/ANU) LOFAR (NL) PAST (CMU/China) VLA-VHF (CfA/NRAO)
VLA-VHF: 180 – 200 MHz Prime focus X-dipole (Greenhill et al – proposed) Leverage: existing telescopes, IF, correlator, operations
Main Experiment: Cosmic Stromgren spheres around z>6 SDSS QSOs (Wyithe & Loeb 2004) VLA-VHF 190MHz 250hrs 20mK 15’ 0.50+/-0.12 mJy VLA spectral/spatial resolution well matched to expected signal: 5’, 1000 km/s
Other Experiments: power spectrum analysis, ‘HI 21cm forest’ • Sensitivity per 0.8MHz channel: currently have 16 channels over 12.5 MHz • Piggy-back on CSS experiment • Centrally condensed uv coverage