1 / 11

Alternatives for TileCal digital readout to FEX

Alternatives for TileCal digital readout to FEX. Samuel Silverstein, Stockholm University. Background. Phase-1 eFEX and jFEX receive digital EM layer data from LAr DPS But equivalent Tile data path not available before Phase 2

alexia
Download Presentation

Alternatives for TileCal digital readout to FEX

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Alternatives for TileCal digital readout to FEX Samuel Silverstein, Stockholm University

  2. Background • Phase-1 eFEX and jFEX receive digital EM layer data from LAr DPS • But equivalent Tile data path not available before Phase 2 • So: need to extract digital hadronic tower sums produced from the current analog sums sent to L1Calo • Three points where this can be done • See next slide

  3. Alternatives Barrel sector logic Muon Trigger MuCTPi • Can extract Tile tower sums from: • Tile receiver stations • PreProcessor modules • JEM modules in JEP Endcap sector logic Muon detector eFEX Central Trigger L1Topo CTP DPS EM calorimeter digital readout C O R E EM data to FEX jFEX Hadronic data to FEX Tile tower “DPS” 3 2 1 JEP PreProcessor C M X Analog sums from Tile/LAr Receiver stations JEM nMCM CP New/upgraded Hardware C M X CTP output L1Calo Trigger Topological info

  4. Considerations • Latency • Dynamic range • Current L1Calo towers have 8 bit dynamic range with 1GeV/LSB • Would like 9 or 10 bits, if possible • Cost to implement • Risk of disruption to existing system

  5. Option 1: Tile Rx stations • Signals extracted at arrival point in USA15, so latency cost is minimal • Must build a new system to digitize and process analog signals • No constraints on dynamic range • Cost is high – essentially need to build new receiver and PreProcessor systems • High risk of disruption to current L1Calo: • Analog data path ahead of L1Calo rearranged • Where do we fit the new systems that do this?

  6. Option 2: PreProcessor • New MCM (Phase 0) • FPGA based tower processing • Can drive higher-speed data to the LVDS link driver card(blue arrows) • Replacement link card (Phase 1) • Send tower data electrically to CP and JEP (same as now) • An FPGA and parallel-optic transmitter (e.g. minipod) produce hadronic output to FEX • Fiber ribbon takes data from link card to an MTP/MPO output port (probably on front panel) nMCM prototype

  7. Option 2: PreProcessor • Minimal latency: • Essentially equal to option 1; • Can extend dynamic range: • nMCM can drive outputs at higher rates, so more bits per tower possible • ‘Easy’ to get 9 bits, 10 bits probably possible • Relatively low cost • nMCM will already exist • A few (small) LVDS link boards • Possibly need to replace some PreProcessor mother boards (8 layers, low component count) • Low disruption: Only upgrading existing boards

  8. Option 3: JEM Upgrade Upgraded input cards Double-ratetower data from upgraded PPM(960 Mbit/s) High-speed links to FEXfrom input cards to front panel (lowest latency) (hadronic tower sums)

  9. Option 3: JEM upgrade • Higher latency: • Serial transmission from PPr to JEP adds multiple BCs to latency • Limited dynamic range: • BCMUX protocol consumes some bandwidth • 9 bits possible (by removing parity), 10 bits probably not possible • Similar cost to Option 2 • PreProcessornMCM and link cards still get replaced (but not PPr mother boards?) • Plans to upgrade JEM daughter boards anyway • Low disruption: Again, similar to Option 2

  10. L1Calo does not favor option 1 • Significant risk of disrupting the current analog data path to L1Calo • The proposed new system would have essentially the same functinality as the existing L1Calo PreProcessor • And where does it all fit? • No latency advantage over the PreProcessor • And highest cost

  11. Option 2 favored over 3 • Lower latency • Fewer boards in the hardware chain • Everything on the PreProcessor • Easier to expand/change dynamic range • When would we use option 3? • Only if we can’t get optical data out of the PreProcessor directly. • Options being considered…no show-stoppers seen yet

More Related