580 likes | 826 Views
SOSTENIBILIDAD E INDEPENDENCIA ENERGÉTICA PARA LAS CIUDADES DE ESPAÑA La producción y distribución de las energías renovables en las ciudades. Francisco Serrano Casares (fserranoc@uma.es) Instituto Andaluz de Energías Renovables E.T.S. Ingenieros Industriales Universidad de Málaga
E N D
SOSTENIBILIDAD E INDEPENDENCIA ENERGÉTICA PARA LAS CIUDADES DE ESPAÑALa producción y distribución de las energías renovables en las ciudades Francisco Serrano Casares (fserranoc@uma.es) Instituto Andaluz de Energías Renovables E.T.S. Ingenieros Industriales Universidad de Málaga OMAU, 24 de abril de 2008
Índice • Panorama energético • Las energías renovables • El ahorro y la eficiencia energética • Conclusiones
EL FACTOR ENERGÉTICO Energía total usada por la humanidad (IEA, 2005) = 11.435 Mtep (millones de toneladas equivalentes de petróleo) Valor equivalente = 15.18 TW (1 TW equivale al consumo continuo de 1012 W; durante un año completo = 8760 TWh = 1000 plantas de 1000 MW de potencia nominal) Consumo anual medio por habitante (6600 millones de personas) = 1,73 tep = 20.160 kWh 20 veces mayor que el mínimo necesario para la supervivencia CONSUMO TOTAL DE ENERGÍA PRIMARIA EN EL MUNDO (2005) = 11.435 Mtep = 1.32 x 1014 kWh KEY WORLD ENERGY STATISTICS (IEA, 2007)
EXTRACCIÓN DE PETRÓLEO Y RESERVAS Producción: 80 x 106 barriles/día 30 x 109 barriles/año Reservas totales mundiales probadas 1.200 x 109 barriles
EXTRACCIÓN DE GAS Y RESERVAS Producción: 7.400 x 106 m3/día 2.700 x 109 m3/año Reservas totales mundiales probadas 185 x 1012 m3
RECURSOS TOTALES DE PETRÓLEO Available Oil Resources as a Function of Economic Price (2004) Less than 40 years at current consumption path (20-25 years for practical purposes) Resources to Reserves - Oil and Gas Technologies for the Energy Markets of the Future (IEA, 2005)
El Sistema Energético • La estructura fundamental de nuestro sistema energético y base de nuestro moderno desarrollo gira todavía en torno a dos tecnologías generadas en los siglos XVIII y XIX: • La máquina de vapor construida por Thomas Newcomen en Inglaterra en 1707. • La conexión entre sí de dos dinamos Gramme en 1873 para la generación de electricidad con la primera, y su transmisión para producir trabajo, con la segunda.
El Sistema Energético Característica más significativa: la perfecta simbiosis tecnológica entre los motores térmicos y los generadores eléctricos que permite la inducción a gran escala de la propiedad que llamamos ELECTRICIDAD VECTOR ENERGÉTICO • alimenta a las máquinas eléctricas motoras • permite generar calor • permite producir luz
El Sistema Energético • Se edifica en la práctica sobre un solo pilar, la TERMODINÁMICA, concretada en las tecnologías del calor, que sólo sabemos obtener mediante tres métodos diferentes: • la combustión química (calor o movimiento) • la reacción nuclear (calor) • la irradiación solar (calor o electricidad) • Paradigma tecnológico-científico: binomio máquina térmica-máquina eléctrica
El Sistema Energético • PROBLEMAS • Bajorendimientode las transformaciones energéticas que tienen lugar en los motores térmicos • Elevadas cantidades de gases perniciosos emitidos por los combustibles fósiles usados mayoritariamente en los motores térmicos • Posibilidad de agotamiento de los combustibles fósiles
¿FUTURA ENERGÍA PRIMARIA? • Energía Total consumida por la humanidad en 2004 = 11.059 Mtoe, equivalente a 14,68 TW • Estimación de la IEA llegar a 25-30 TW para el 2050 y a 40-50 TW para el 2100 • Alternativas e inconvenientes:carbón (emisiones de CO2); energía nuclear (residuos, seguridad, combustible para sólo alrededor de 100 años); fusión nuclear (50 años?!) • ¿De dónde obtendrá la humanidad la energía primaria en el futuro?, ¿qué papel jugarán las energías renovables?
POTENCIAL ENERGÍAS RENOVABLES POTENCIAL ESTIMADO ANUAL DE LAS DISTINTAS FUENTES DE ENERGÍA RENOVABLES (1 TW equivale a un consumo sostenido de 1012 W; este valor durante un año = 8760 TWh = 1,000 plantas de potencia de 1,000 MW cada una de ellas)
POTENCIAL ENERGÍAS RENOVABLES vs NUCLEAR
Por sectores Por fuentes Consumo de energía final
Dependencia energética • Las importaciones netas de energía en 2005 fueron el 82,4% del consumo total. • En 1990, esta dependencia estaba en el 67%. • Consecuencias: • falta de seguridad en el suministro • mayor grado de incertidumbre que en los años anteriores • situación económica inestable
Nuevo modelo energético sostenible • Desarrollo de las energías renovables • Políticas de ahorro y eficiencia energética • Uso de tecnologías energéticas avanzadas(ciclos combinados, energía del hidrógeno, fusión nuclear, …)
Las energías renovables Tienen su origen en la Naturaleza, se producen de manera continua y son inagotables a escala humana • Minihidráulica • Geotérmica • Del mar • Solar (térmica y fotovoltaica) • Eólica • Biomasa
Mecanismos de ayuda a las energías renovables • Subvenciones a las instalaciones • Estatales (ICO-IDAE) • Autonómicas (Programa de incentivos-PROSOL en Andalucía) • Primas a la producción eléctrica • Eólica • Solar (fotovoltaica y térmica alta-media temperatura) • Biomasa • Desgravaciones en el impuesto de sociedades
Renovables en Málaga Las energías renovables representan el 91,95% del total de la potencia instalada en la provincia de Málaga
Distribución de la producción de energía eléctrica en Málaga
El Sol como recurso renovable En Andalucía: Irradiación media anual: 2MWh/m2 15 Gtep/año (2 veces el consumo mundial de 1991)
Energía solar térmica Aprovechamiento directo de la radiación solar para producir un efecto térmico
Aplicaciones El Código Técnico de la Edificación establece la obligatoriedad de estas instalaciones en todas las nuevas edificaciones desde septiembre de 2006. • Sector hotelero • Preparación de agua caliente sanitaria cuarta parte del consumo de un hotel medio • Climatización de piscinas • Sector residencial • Vivienda tipo: 2 a 4 m2 y almacenamiento de 150 a 300 litros. El coste de la instalación se sitúa entre los 1.100 € y los 2.400 €
Energía solar térmica de media temperatura Concentradores cilindro-parabólicos
Energía solar fotovoltaica Conversión directa de la energía de la radiación solar en electricidad mediante las células solares
Energía solar fotovoltaica en Andalucía The electricity production capacity of photovoltaic power plants and the selection of solar energy sites in Andalusia (Spain) J. Arán Carrioón, A. Espín Estrella, F. Aznar Dolsa, A. Ramos Ridaob. University of Granada, 18071 Granada, Spain Renewable Energy 33 (2008) 545–552
Capacidad de producción eléctrica con fotovoltaica en Andalucía 38,693 GWh/año Demanda de energía eléctrica en Andalucía 38,693 GWh/año (año 2003)
Venta de electricidad REAL DECRETO 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica en régimen especial (BOE nº126 de 26 mayo 2007).
Obligatoriedad de uso RD 314/2006 Código Técnico de la Edificación establece la instalación mínima de 6,25 kWp, según el uso y la localización
Energía eólica Conversión de la energía del viento en energía útil mediante un aerogenerador
La biomasa como fuente de energía Representa el 55% de la energía producida por las renovables
Aprovechamientos de la energía de la biomasa • Doméstico y para fines térmicos • Nuevos aprovechamientos • Biomasa como combustible para generación de electricidad • Producción de biogas a partir del tratamiento de residuos • Producción de biocombustibles
Los biocombustibles • Puesta en valor de zonas con excedentes agrícolas o sin cultivar y reciclado de aceites vegetales usados • Bioetanol • Biodiesel • Industria de producción de promoción pública • Combustible en el transporte público
Ahorro y eficiencia energética Ahorro Reducción de la demanda Eficiencia Reducción del consumo de recursos
El ahorro en las ciudades • Cada hogar español consume anualmente en concepto de iluminación el equivalente a 352 kilos de CO2 emitidos a la atmósfera • Sustituir en cada hogar una bombilla convencional por otra de bajo consumo evitaría la emisión de 700.000 toneladas de CO2
El ahorro por los ciudadanos • Instalar burletes en puertas y ventanas ahorra entre un 5 y un 10% de energía • Instalar dobles ventanas ahorra un 20% de consumo de energía • Hacer un uso racional de los aparatos de calor y refrigeración: cada grado de temperatura que aumentemos consume entre un 5 y un 7% más de energía