1 / 54

MODELES DE LA COURBE DES TAUX D’INTERET ENSAE - DEA MASE Université Paris IX Dauphine Séance 4

MODELES DE LA COURBE DES TAUX D’INTERET ENSAE - DEA MASE Université Paris IX Dauphine Séance 4. Philippe PRIAULET HSBC-CCF. Plan de la Séance. Les modèles stochastiques de déformation de la courbe des taux: Approche détaillée

Download Presentation

MODELES DE LA COURBE DES TAUX D’INTERET ENSAE - DEA MASE Université Paris IX Dauphine Séance 4

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MODELES DE LA COURBE DES TAUX D’INTERETENSAE - DEA MASE Université Paris IX DauphineSéance 4 Philippe PRIAULET HSBC-CCF

  2. Plan de la Séance • Les modèles stochastiques de déformation de la courbe des taux: Approche détaillée • Le modèle de Black: référence du marché pour l’évaluation de caps, floors et swaptions • Présentation de quelques options exotiques de taux • comprendre l’attrait des options exotiques • caps/floors à barrière • incremental fixed swap • subsidised swap ...

  3. Evaluation et couverture de produits dérivés standards dans le modèle de Black Ce sont des options européennes dont les prix sont obtenus dans le modèle de Black (1976). - les caps, floors et collars - les swaptions Ces options sont traitées de gré à gré. Les options sur futures sont également évaluées et couvertes dans ce modèle. • :

  4. Caps, Floors et Collars - Définition • Définition du cap • Un cap est un contrat où le vendeur promet de rétribuer son porteur si le taux d’intérêt de référence vient à dépasser un niveau pré-déterminé (le taux d’exercice du cap) à certaines dates dans le futur. • L’acheteur d’un cap utilise classiquement ce produit pour se couvrir contre une hausse des taux d’intérêt, par exemple pour couvrir un prêt à taux variable consenti par une banque.

  5. Caps, Floors et Collars - Définition (2) • Définition du floor • Le vendeur d’un floor promet de rétribuer son porteur si le taux de référence vient à passer sous le taux d’exercice du floor. • L’acheteur d’un floor utilise classiquement ce produit pour se couvrir contre une baisse des taux d’intérêt, par exemple pour couvrir un placement à taux variable. • Définition du collar • Il résulte de l’achat d’un cap et de la vente d’un floor (1), ou de la vente d’un cap et de l’achat d’un floor (2). Il est utilisé afin de diminuer le coût d’une protection contre la hausse (1) et la baisse des taux (2).

  6. Caps, Floors et Collars - Terminologie • Montant nominal: il est fixe en général • Taux de référence: il s’agit du taux d’intérêt sur lequel repose le contrat. Les plus usuels en Europe sont l’Euribor 1 mois, 3 mois, 6 mois et 1 an. • Taux d’exercice: il s’agit d’un niveau prédeterminé. Il reste fixe au cours du contrat. • Fréquence de constatation: il s’agit de la fréquence selon laquelle le taux de référence est comparé au taux d’exercice. Les fréquences les plus usuelles sont tous les mois, tous les trois mois, tous les six mois et tous les ans. • Maturité de l’option: elle peut aller de plusieurs mois jusqu’à 30 ans. • Prime: elle est exprimée en % du montant nominal.

  7. Caps, Floors et Collars - Exemple • Une société contracte au 02/11/01 un cap: • - de date de début le 01/12/01 • - de maturité 2 ans • - de montant nominal 1.000.000 d’euros • - de taux d’exercice 4%, • - dont le taux de référence est l’Euribor 6 mois • Les constatations ont lieu tous les 6 mois. Tous les 6 mois aux dates suivantes 01/06/02, 01/12/02, 01/06/03 et au 01/12/03, l’acheteur du cap touche: • 1.000.000* [Euribor 6 mois (constaté 6 mois + tôt) -4%]*(1/2) • Le terme 1/2 permet de tenir compte du prorata-temporis.

  8. Caps, Floors et Collars - Cotation • Les caps, floors et collars sont évalués à partir du modèle de Black (1976). • Le modèle de Black est une version du modèle BSM (Black-Scholes-Merton) adapté aux produits de taux d’intérêt. • Les caps sont décomposés en caplets (voir exemple précédent) et les floors en floorlets. • Les caplets et floorlets sont cotés en volatilité, la volatilité implicite de la formule de Black (cf slide suivante).

  9. Caps, Floors et Collars - Cotation (2)

  10. Volatilité ATM / Smile • La volatilité ATM correspond à la volatilité implicite du modèle de Black quand le strike de l’option est égal au niveau du taux forward sous-jacent. • Lorsque le strike de l’option est différent du niveau du taux forward sous-jacent, on constate que la volatilité de l’option est généralement différente de celle constatée ATM. • On peut alors tracer la forme de la volatilité en fonction du niveau du strike pour une maturité donnée; on appelle cela smile (ou smirk) en raison de la forme de cette courbe.

  11. Caps, Floors et Collars - Pricing • Le pay-off d’un caplet à la date Tj est le suivant: • et le pay-off d’un floorlet à la date Tj: • où: • est le taux euribor en de maturité mois. • est exprimé en fractions d’années dans les calculs. • La variable que l’on diffuse dans le modèle de Black est le taux forward linéaire . • On montre que ce taux est une martingale sous la probabilité forward neutre (cf séances 6-7 et MP p 203 à 210).

  12. Caps, Floors et Collars - Pricing (2) • La diffusion du taux est la suivante: • où dW(t) est un mouvement brownien sous la probabilité forward neutre , et est la volatilité du taux forward, ce que l’on appelle la volatilité du caplet. • On en déduit en t la formule du cap suivante (somme des n caplets)

  13. Caps, Floors et Collars - Pricing (3) • où: • et est la fonction de répartition de la loi normale centrée réduite. • Formule du floor (somme des n floorlets) • Le prix d’un collar est obtenu à partir des deux formules précédentes. • Pour couvrir ces produits, on calcule les grecques, i.e. le delta, le gamma, le véga, le rhô et le théta, de chacun des caplets ou floorlets.

  14. Les Grecques du Caplet • On s’intéresse au caplet qui délivre le flux Cj en Tj. • - le delta: dérivée première du caplet par rapport au taux forward sous-jacent • - le gamma: dérivée seconde du caplet par rapport à

  15. Les Grecques du Caplet (2) • - le vega: dérivée première du caplet par rapport à la volatilité • - le rho: dérivée première du caplet par rapport au taux d’intérêt • - le théta: dérivée première du caplet par rapport au temps

  16. Les Grecques du Floorlet • On s’intéresse au floorlet qui délivre le flux Fj en Tj. • - le delta: dérivée première du floorlet par rapport au taux forward sous-jacent • - le gamma: dérivée seconde du floorlet par rapport à

  17. Les Grecques du Floorlet (2) • - le vega: dérivée première du floorlet par rapport à la volatilité • - le rho: dérivée première du floorlet par rapport au taux d’intérêt • - le théta: dérivée première du floorlet par rapport au temps

  18. Exemple Numérique • Une entreprise achète un floorlet le 19/04/02 dont les caractéristiques sont les suivantes: • - montant nominal: 10 000 000 d’euros • - taux de référence: Euribor 6 mois • - taux d’exercice: 4.70% • - Maturité: 27/05/02 • - Date de paiement du flux: 27/11/02 • En supposant que l’Euribor 6 mois forward est égal à 4.73% à la date t, la volatilité du floorlet 15% et que le taux zéro-coupon venant à échéance le 27/11/02 est égal à 4.80%, quels sont le prix et les grecques de ce floorlet dans le modèle de Black ?

  19. Exemple Numérique (2) • Son prix est égal à 3844 euros et nous obtenons les grecques suivantes: • 1- Pour une variation du taux forward de 4.73% à 4.74%: • a) variation de prix exacte = -213.41 • b) variation de prix estimée par le delta: • c) variation de prix estimée par le delta et le gamma:

  20. Exemple Numérique (3) • 2- Pour une variation de la volatilité de 15% à 16%: • a) variation de prix exacte = 300.86 • b) variation de prix estimée par le véga: • 3- Pour une variation du taux zéro-coupon de 4.80% à 5.80%: • a) variation de prix exacte = -23.31 • b) variation de prix estimée par le rho: • 4- Un jour plus tard le 20/04/02 (passage du temps): • a) variation de prix exacte = -59.24 • b) variation de prix estimée par le théta:

  21. Swaptions - Définition/Terminologie • Définition • Une swaption ou option sur swap européenne est un contrat qui permet à son porteur de rentrer à une date fixée (date de la maturité de l’option) dans un swap aux caractéristiques pré-définies. • Terminologie • Montant nominal: il est fixe en général. • Il existe deux types de swaptions, la swaption receveuse et la swaption payeuse: • - la swaption receveuse donne à l’acheteur le droit de recevoir la patte fixe du swap; • - inversement, la swaption payeuse donne à l’acheteur le droit de payer la patte fixe du swap.

  22. Swaptions - Exemple • Taux d’exercice: il s’agit du taux fixe connu à l’avance auquel l’acheteur de l’option va payer ou recevoir la patte fixe. • Maturité de l’option: elle peut aller de plusieurs mois jusqu’à 10 ans. • Prime: elle est exprimée en % du montant nominal. • Exemple • Soit une entreprise qui s’est endettée à 5 ans au taux variable euribor 6 mois et qui souhaite dans un an avoir la possibilité de transformer son endettement à taux variable en un endettement à taux fixe. Elle achète alors une swaption de maturité 1 an qui lui permet de rentrer dans le swap payeur du fixe et receveur du variable.

  23. Swaptions - Cotation en volatilité • Les swaptions sont cotées en volatilité, la volatilité implicite du modèle de Black.

  24. Swaptions - Pricing • Formule pour une swaption payeuse de montant nominal N, qui, repose sur un swap qui distribue des flux selon la fréquence annuelle • où: • Fs(t) est le taux de swap forward calculé à la date t. • est la volatilité de Fs. • est la date d’échéance de l’option.

  25. Swaptions - Pricing (2) • Formule pour une swaption receveuse de montant nominal N, qui, repose sur un swap qui distribue des flux selon la fréquence annuelle

  26. Les Grecques de la Swaption Payeuse • - le delta: dérivée première de la swaption par rapport au taux de swap forward sous-jacent • - le gamma: dérivée seconde de la swaption par rapport à

  27. Les Grecques de la Swaption Payeuse (2) • - le vega: dérivée première de la swaption par rapport à la volatilité • - le rho: dérivée première de la swaption par rapport au taux d’intérêt • - le théta: dérivée première de la swaption par rapport au temps

  28. Exemple Numérique • Une entreprise achète une swaption payeuse le 19/04/02 dont les caractéristiques sont les suivantes: • - montant nominal: 1 000 000 d’euros; • - swap sous-jacent: le swap Euribor 6 mois de maturité 4 ans qui délivrent des paiements tous les 6 mois sur les 2 pattes; • - taux d’exercice: 5.36%; • - Maturité: 27/05/02 • - Date de paiement du flux: 27/11/02 • En supposant que le taux de swap forward est égal à 5.36% à la date t, la volatilité de la swaption 20% et que la courbe des taux zéro-coupon est plate à 5%, quels sont le prix et les grecques de cette swaption dans le modèle de Black ?

  29. Exemple Numérique (2) • Son prix est égal à 2876 euros et nous obtenons les grecques suivantes: • 1- Pour une variation du taux de swap forward de 5.36% à 5.37%: • a) variation de prix exacte = 128.94 • b) variation de prix estimée par le delta: • c) variation de prix estimée par le delta et le gamma:

  30. Exemple Numérique (3) • 2- Pour une variation de la volatilité de 20% à 21%: • a) variation de prix exacte = 230.54 • b) variation de prix estimée par le véga: • 3- Pour une variation du taux zéro-coupon de 5% à 6%: • a) variation de prix exacte = -65 • b) variation de prix estimée par le rho: • 4- Un jour plus tard le 20/04/02 (passage du temps): • a) variation de prix exacte = -60.04 • b) variation de prix estimée par le théta:

  31. Quelques Options Exotiques de Taux Ce sont des options crées sur-mesure par les banques pour leurs clients. • Elles sont utilisées généralement: • - par les entreprises afin de créer des structures de couverture plus adaptées aux risques encourus; • - par les gérants de portefeuille afin d ’augmenter le rendement de leurs actifs; • - par certaines institutions financières, afin de combler le «mismatch» entre leur actif et leur passif. • Ils en existent de très nombreuses. • :

  32. Quelques Options Exotiques de Taux (2) Nous allons étudier les suivantes: • - les caps/floors à barrière; • - les «incremental fixed swaps»; • - les N-caps et floors • - les options sur spread • - les «subsidised swaps» • Ces options sont évaluées et couvertes à l’aide de méthodes numériques (Monte Carlo, Schéma aux différences finies, Treillis) dans les modèles de marché (BGM, Jamshidian) et/ou dans les versions markoviennes du modèle HJM. • :

  33. Comprendre l’attrait des produits structurés exemple: l’analyse des taux forwards CMS • Les taux forwards sont les variables modélisées dans les modèles de taux. • Pour les produits les plus simples (swap vanille, swap CMS…), le pricing consiste à projeter les taux forwards. • Des niveaux de taux forwards «aberrants» peuvent donner des points d’entrée dans certains produits structurés. • Exemple: Swap CMS ou CMS spread linked bonds

  34. Analyse des Taux Forwards CMS 30yr contre CMS 2yr

  35. Analyse des Taux Forwards Spread CMS 30yr - CMS 2yr

  36. Exemple Swap CMS • Les deux graphiques précédents suggèrent que rentrer dans un swap départ forward au 01/01/09 de maturité 10 ans ou plus, qui reçoit le 30 ans et paie le 2 ans, représente une opportunité intéressante. • Nous construisons ce swap pour une maturité de 10 ans. L’acheteur du swap reçoit le 30 ans flat et paie le 2 ans flat. • On pourrait aussi construire une obligation dont le coupon serait lié à ce spread CMS. • Pour juger du couple rendement/risque associé à cette stratégie, nous implémentons une analyse par scénario avec 5 différents scénarios de courbe (inchangé, mouvement parallèle +100 bp et -100 bp, bear flattening et bull steepening) et 4 horizons différents (3 mois, 6 mois, 2 ans et 5 ans).

  37. Les scénarios «bear flattening» et «bull steepening»

  38. Résultat de l’analyse par scénario • Si la courbe reste inchangée, il suffit de laisser passer le temps pour gagner de l’argent. • Le «bull steepening» scénario est le scénario le plus profitable.

  39. Caps et Floors à Barrière • Les caps et floors à barrières européens sont des caps et floors européens classiques qui fournissent un cash-flow selon que le taux de référence atteint ou non une barrière déterminée à maturité de l’option. • Il y a 4 différents types de caps et floors à barrière: • - le cap up-and in: le cap est activé dès lors que le taux de référence atteint ou dépasse la barrière (supérieure au strike); • - le cap up-and-out: le cap est désactivé dès lors que le taux de référence atteint ou dépasse la barrière (supérieure au strike); • - le floor down-and-in: le floor est activé dès lors que le taux de référence atteint ou passe sous la barrière (inférieure au strike); • - le floor down-and-out: le floor est désactivé dès lors que le taux de référence atteint ou passe sous la barrière (inférieure au strike). • :

  40. Exemple de Cap Up-and-Out • Le 02/01/01, une entreprise qui a contracté un prêt de maturité deux ans indexé sur l’Euribor 3 mois s’attend à une hausse raisonnable des taux. Plutôt que de contracter un cap de strike 5%, elle achète le cap up-and-out suivant: • - montant nominal: 10.000.000 euros • - taux de référence: Euribor 3 mois • - strike: 5% • - barrière: 6% • - date de démarrage: 08/01/01 • - maturité: 08/01/03 • - fréquence de constatation: tous les 3 mois • :

  41. Exemple de Cap Up-and-Out (2) • Payoff de l’option au 08/04/01: • où est le taux Euribor 3 mois au 08/01/01, et si l’événement A se passe, et zéro sinon. • Le cap à barrière est identique à un cap classique si le taux euribor au 08/01/01 n’atteint pas la barrière. Il est désactivé dès lors que cette barrière est atteinte ou dépassée. • En supposant que la prime est égale à 0.08% du montant nominal, nous traçons le P&L de ce cap up-and-out. • :

  42. Exemple de Cap Up-and-Out (3) • :

  43. Incremental Fixed Swaps Un incremental fixed swap est un swap dont la patte fixe peut être transformée en la combinaison d’une patte fixe et d’une patte variable, en fonction du niveau du taux variable. Quand le taux variable augmente, la composante fixe augmente en proportion. Une entreprise endettée à taux variable et payeuse de la patte fixe bénéficiera ainsi d ’une couverture efficace en cas de hausse des taux tout en profitant d’un coût de financement réduit si les taux restent bas. Le taux de swap d’un incremental fixed swap est supérieur à celui d’un swap standard. • :

  44. Exemple d’Incremental Fixed Swap Soit l’incremental fixed swap de montant nominal 10.000.000 d’euros qui repose sur le taux euribor 3 mois. La proportion fixe sur la patte fixe est déterminée comme suit: La patte fixe est payée annuellement tandis que la patte variable est payée tous les 3 mois. Le taux fixe de ce swap est égal à 6.3%. • :

  45. Exemple d’Incremental Fixed Swap (2) • Le swap est comme suit: • où y est la proportion à taux fixe qui dépend du niveau du taux Euribor 3 mois. • Le taux de swap du swap standard est égal à 6% et nous calculons le coût de financement d’une entreprise endettée à taux variable Euribor 3 mois dans les 3 situations suivantes: • - quand elle ne fait rien; • - quand elle contracte le swap standard où elle paie la patte fixe; • - quand elle contracte l’incremental fixed swap précédent. • :

  46. Exemple d’Incremental Fixed Swap (3) • Le coût de financement est résumé dans le tableau suivant: • Nous traçons sur la slide suivante le graphique des trois coûts de financement comparés. • :

  47. Exemple d’Incremental Fixed Swap (4) • :

  48. Les N-Caps et Floors • Le N-cap (N-floor) est:une version modifiée du cap up-and-out (floor down-and-out). Quand la barrière est atteinte le cap (le floor) est remplacé par un autre cap (floor) de strike supérieur (inférieur). • Le prix d’un N-cap (N-floor) est supérieur à celui d’un cap up-and-out (floor down-and-out) mais inférieur à celui d’un cap (floor). • Logiquement, la protection obtenue par un N-cap (N-floor) se situe entre celle d’un cap up-and-out (floor down-and-out) et d’un cap (floor). • :

  49. Exemple de N-Floor • Une entreprise, qui détient un portefeuille obligataire de maturité 5 ans indexé sur l’Euribor 1 an, anticipe que les taux vont baisser dans le futur. Il achète un N-floor de maturité 5 ans, de strike 5%, de barrière 4% avec un deuxième strike à 3.5%. Les paiements sont annuels, et le montant nominal est égal à 10.000.000 d’euros. • Payoff de chacun des floorlets: • où est le taux Euribor 1 an constaté un an auparavant. • Nous traçons sur la slide suivante le graphique de ce payoff. • :

  50. Exemple de N-Floor (2) • :

More Related