1 / 13

Leszek Siwik

Leszek Siwik. Optymalizacja wielokryterialna. Podstawowe pojęcia. Optymalizacja wielokryterialna próba znalezienia wektora zmiennych decyzyjnych: x = [x 1 ,x 2 ,...,x k ], który spełnia określone warunki: g i (x)  0 (i = 1... m), h i (x) = 0 (i = 1 ... p)

alma
Download Presentation

Leszek Siwik

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Leszek Siwik Optymalizacja wielokryterialna

  2. Podstawowe pojęcia Optymalizacja wielokryterialna próba znalezienia wektora zmiennych decyzyjnych: x = [x1,x2,...,xk], który spełnia określone warunki: gi(x)  0 (i = 1... m), hi(x) = 0 (i = 1 ... p) oraz optymalizuje wektor funkcyjny, którego elementy reprezentują funkcje celu: f(x) = (f1(x),f2(x),...,fk(x))

  3. Podstawowe pojęcia Optymalizacja wielokryterialna

  4. Podstawowe pojęcia Funkcje celu reprezentują matematyczny opis danego kryterium oraz najczęściej pozostają w konflikcie miedzy sobą. (przykład ceny i mocy obliczeniowej). Optymalizacja polega na znalezieniu takiego rozwiązania, które byłoby akceptowalne dla każdej funkcji celu. Jest pierwszym krokiem w stronę znalezienia rozwiązania. Oczywiście rozwiązanie byłoby idealne, gdyby było rozwiązaniem najlepszym z punktu widzenia, każdej funkcji celu. Możliwe rozwiązania zadania optymalizacyjnego klasyfikuje się jako zdominowanei niezdominowane (paretooptymalne – ang. Parento optimal).

  5. Podstawowe pojęcia Dla zadania maksymalizacji zestawu k funkcji celu: f(x)=(f1(x),f2(x),...,fk(x)); Rozwiązanie x jest zdominowane, jeśli istnieje dopuszczalne rozwiązanie y nie gorsze od x, tzn. dla każdej funkcji celu fi: fi(x) fi (y); (i=1,... k); W przeciwnym wypadku x jest rozwiązaniem niezdominowanym

  6. Podstawowe pojęcia Dla zadania minimalizacji zestawu k funkcji celu f(x)=(f1(x),f2(x),...,fk(x)) rozwiązanie x jest zdominowane, jeśli istnieje dopuszczalne rozwiązanie y nie gorsze od x, tzn. dla każdej funkcji celu fi: fi(y) fi (x) (i=1,... k) W przeciwnym wypadku x jest rozwiązaniem niezdominowanym

  7. Wybrane metody Metoda ważonych celów: gdzie: k – ilość funkcji; x – wektor rozwiązań; wi – wagi takie, że: oraz

  8. Wybrane metody Metoda VEGA Użyte oznaczenia: t – numer pokolenia Pt – populacja w t-tym pokoleniu P ′ – populacja tymczasowa k – ilość kryteriów Algorytm Parametry wejściowe: N – rozmiar populacji T – maksymalna ilość pokoleń pc – prawdopodobieństwokrzyżowania pm –prawdopodobieństwo mutacji Wynik: A – zbiór rozwiązań niezdominowanych

  9. Wybrane metody Krok 1: Inicjalizacja (wygenerowanie populacji początkowej) Niech P0 = Ø oraz t = 0. Dla i=1, ..., N wykonaj: Wylosuj osobnika i. Dodaj osobnika i do zbioru P0. Krok 2: Wyznaczenie dopasowania i selekcja: Pt ′= Ø. Dla i = 1, ..., k wykonaj: Dla każdego osobnika oblicz jego dopasowanie w oparciu o funkcję celu fi Dla j=1, ..., N/k wybierz osobnika i z Pt i dodaj go do P ′. Krok 3: Rekombinacja: Niech P ′′= Ø. Dla i=1, ..., N/2 wykonaj Wybierz dwa osobniki ′ i usuń je z P ′. Skrzyżuj osobniki: i j; wynik: osobniki k i l. Dodaj k, ldo P ′′ z prawdopodobieństwem pc (w przeciwnym wypadku do P ′′ dodaj osobniki i, j).

  10. Wybrane metody Krok 4: Mutacja: Niech P′′′ = Ø Dla każdego osobnika wykonaj: Zmutuj osobnika iz prawdopodobieństwem pm. Wynik: osobnik j. Dodaj osobnika jdo zbioru P ′′′. Krok 5: Zakończenie: Niech Pt+1 = P ′′′ i t=t+1. Jeżeli t ≥T to zakończ (Wynik: A = rozwiązanie niezdominowane z populacji Pt), w przeciwnym wypadku powrót do roku 2.

  11. Wybrane metody Metoda SPEA Użyte oznaczenia: t – numer pokolenia Pt – populacja w t-tym pokoleniu Pt– zbiór zewnętrzny P′ – tymczasowy zbiór zewnętrzny P ′ – populacja tymczasowa Algorytm Parametry wejściowe: N – rozmiar populacji Nm – maksymalny rozmiar zbioru zewnętrznego T – maksymalna ilość pokoleń pc – prawdopodobieństwo krzyżowania pm – prawdopodobieństwo mutacji Wynik: A – zbiór rozwiązań niezdominowanych

  12. Wybrane metody Krok 1: Inicjalizacja: Wygeneruj populację początkową P0 (patrz krok pierwszy algorytmu VEGA) oraz pusty zbiór zewnętrzny P0 = Ø. Niech t = 0. Krok 2: Uzupełnienie zbioru zewnętrznego. Niech P′ = Pt. Skopiuj do P′ osobniki z populacji Pt, niezdominowane przez inne osobniki z populacji Pt. Usuń z P′ osobniki zdominowane przez inne osobniki z P′. Zredukuj liczność zbioru P′ do Nprzez clustering; wynik: Pt+1. Krok 3: Wyznaczenie dopasowania: Oblicz wartość dopasowania F osobników w Pt i Pt przy użyciu algorytmu opisanego dalej.

  13. Wybrane metody Krok 4: Selekcja: Niech P ′= Ø. Dla i=1, ..., k wykonaj: Wybierz losowo dwa osobniki Pt . Jeżeli F(i)<F(j) to P ′= P ′ +{i}, w przeciwnym wypadku P ′= P ′ +{j} (wartość przystosowania jest tu minimalizowana). Krok 5: Rekombinacja: patrz krok 3 algorytmu VEGA (wynik: P ′′). Krok 6: Mutacja: patrz krok 4 algorytmu VEGA (wynik: P ′′′). Krok 7: Zakończenie: Niech Pt+1 = P ′′′ i t = t+1. Jeżeli t ≥ T to zakończ (Wynik: A = rozwiązanie niezdominowane z populacji Pt), w przeciwnym wypadku powrót do kroku 2.

More Related