50 likes | 247 Views
Chapter 2:Limits and Continuity. 2.1 Limits and Rates of Change. lim x→c f(x) = L. The real number L is a limit of the function f(x) as its x values approach the real number c if 0 < |x −c | < δ → | f(x) − L |< ε
E N D
Chapter 2:Limits and Continuity 2.1 Limits and Rates of Change
limx→cf(x) = L • The real number L is a limit of the function f(x) as its x values approach the real number c if 0 < |x−c| < δ → | f(x) − L |< ε • All x values within a neighborhood δ units on either side of c will have corresponding y values within a neighborhood ε units on either side of L. (for positive δ and ε)
Theorem 1 Properties of LimitsExamples Given:limx→cf(x) = 2 and limx→cg(x) = -3 • Sum : limx→c (f(x) + g(x)) = 2 + -3 = -1 • Difference : limx→c(f(x) - g(x)) = 2 - -3 = 5 • Product : limx→c(f(x) x g(x)) = 2 x -3 = -6 • Constant Multiple : limx→c(k x g(x))= -3k • Quotient Product : limx→c(f(x) ÷ g(x)) = -2/3 • Power : limx→c(f(x))r/s = 2r/s
Theorem 2:Polynomial and Rational Functions • For polynomial function f(x) and any real number c, lim x→cf(x) = f(c) • Ex. limx→-2(x² +3x +4) = (-2)² +3(-2) + 4 =2 • For rational function [f(x) ÷ g(x)], • limx→c [f(x)÷g(x)] = f(c)/g(c) for g(c)≠0 • Ex. limx→2 [(x²-1)÷(x+1)] = (4-1)/(2+1)=1
Theorem 3: 1- and 2-Sided Limits RIGHT-HAND limit: lim x→c+f(x) Value that f(x) approaches as x approaches c from the right side • LEFT-HAND limit: lim x→c-f(x) Value that f(x) approaches as x approaches c from the left side • A function has a limit as x approaches c if and only if the right-hand and left-hand limits both exist at c AND are equal.