1 / 62

CHƯƠNG 11. HỒI QUY ĐƠN BIẾN - TƯƠNG QUAN

CHƯƠNG 11. HỒI QUY ĐƠN BIẾN - TƯƠNG QUAN. 1. HỒI QUY ĐƠN BIẾN Ví dụ: Tìm hiểu mối liên hệ giữa tổng vốn đầu tư (Y – Tỉ đồng) và lãi suất ngân hàng (X - %) tại địa bàn Trà Vinh qua 10 năm liên tiếp:. 1. 9/15/2014. 1. HỒI QUY ĐƠN BIẾN. 2. 9/15/2014. 1. HỒI QUY ĐƠN BIẾN.

alyson
Download Presentation

CHƯƠNG 11. HỒI QUY ĐƠN BIẾN - TƯƠNG QUAN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CHƯƠNG 11. HỒI QUY ĐƠN BIẾN - TƯƠNG QUAN 1. HỒI QUY ĐƠN BIẾN Ví dụ: Tìm hiểu mối liên hệ giữa tổng vốn đầu tư (Y – Tỉ đồng) và lãi suất ngân hàng (X - %) tại địa bàn Trà Vinh qua 10 năm liên tiếp: 1 9/15/2014

  2. 1. HỒI QUY ĐƠN BIẾN 2 9/15/2014

  3. 1. HỒI QUY ĐƠN BIẾN Phương trình: Yi = β1 + β2Xi + ui Trong đó : X, Y: Được gọi là biến. X được gọi là biến giải thích (độc lập); Y: Biến được giải thích (phụ thuộc). β1: Hệ số chặn, tham số chặn β2: Hệ số góc, tham số biến ui: Là biến ngẫu nhiên và còn gọi là yếu tố ngẫu nhiên 3 9/15/2014

  4. 2. MÔ HÌNH HỒI QUY TUYẾN TÍNH MẪU Phương trình hồi quy mẫu: nên ta có: Yi = + ei 4 9/15/2014

  5. Hãy ước lượng phương trình hồi quy mẫu? 5 Ta có n =10, = 32,6 + 3,5220 x 10,55 = 69,7571 Phương trình hồi quy mẫu: = 69,7571 – 3,5220Xi 9/15/2014

  6. 3. HỆ SỐ XÁC ĐỊNH VÀ HỆ SỐ TƯƠNG QUAN 6 TSS = ESS + RSS Hệ số tương quan: r = ± 9/15/2014

  7. 4. PHƯƠNG SAI VÀ SAI SỐ CHUẨN CỦA ƯỚC LƯỢNG 7 9/15/2014

  8. 5. KHOẢNG TIN CẬY CỦA β1, β2 Khoảng tin cậy của β1: ± tα/2se( ) Khoảng tin cậy của β2: ± tα/2se( ) Ví dụ: Tiếp tục ví dụ 1, Hãy xác định khoảng tin cậy của β1, β2. 8 9/15/2014

  9. 6. KIỂM ĐỊNH SỰ PHÙ HỢP CỦA HÀM HỒI QUY Chúng ta kiểm định giả thuyết: H0: 2 = 0 9 9/15/2014

  10. 7. ỨNG DỤNG PHÂN TÍCH HỒI QUY: DỰ BÁO Dự báo điểm: Cho X0, tìm thông qua phương trình hồi quy Ví dụ : Tiếp tục ví dụ 1, khi lãi suất là 8% thì tổng vốn đầu tư là bao nhiêu? 10 9/15/2014

  11. 7. ỨNG DỤNG PHÂN TÍCH HỒI QUY: DỰ BÁO Dự báo giá trị trung bình: Dự báo giá trị trung bình: ± t/2se( ) Ví dụ: Tiếp tục ví dụ 1, khi lãi suất là 8% thì tổng vốn đầu tư trung bình là khoảng bao nhiêu ? 11 9/15/2014

  12. 7. ỨNG DỤNG PHÂN TÍCH HỒI QUY: DỰ BÁO Dự báo giá trị riêng biệt: ± t/2se Ví dụ : Tiếp tục ví dụ 1, khi lãi suất là 8% hãy dự báo giá trị riêng biệt của tổng vốn đầu tư. 12 9/15/2014

  13. CHƯƠNG 12. HỒI QUY ĐA BIẾN 1. TỔNG QUAN VỀ MÔ HÌNH HỒI QUY ĐA BIẾN Mô hình: Yi = β1 + β2X1t + β3X2t +…+ βkXkt + ut Trong đó : Y là biến phụ thuộc X là các biến độc lập β1: Hệ số từ do βj: Hệ số hồi quy riêng 13 9/15/2014

  14. Các giả định (điều kiện) phân tích mô hình hồi quy đa biến 1. Tuyến tính các tham số hồi quy 2. Các giá trị mẫu của xtj được ước lượng đúng, không có sai số 3. Kỳ vọng hoặc trung bình số học của các sai số là bằng 0 4. Các sai số u độc lập với biến giải thích 5. Các sai số u có phương sai bằng nhau 6. Các sai số u từng cặp độc lập với nhau 7. Vector sai số u theo phân phối chuẩn nhiều chiều 8. Không có biến độc lập nào là hằng số, và không tồn tại các mối liên hệ tuyến tính hoàn toàn chính xác giữa các biến độc lập 14 9/15/2014

  15. 2. PHÂN TÍCH HỒI QUY ĐA BIẾN BẰNG PHẦN MỀM SPSS Để phân tích hồi quy ta cần một số bước như sau: Bước 1: Xác định vấn đề cần nghiên cứu Bước 2: Xác định được đâu là biến Y, đâu là các biến X. Bước 3: Lập bảng câu hỏi hoặc phiếu khảo sát để thu thập số liệu. Bước 4: Xử lý số liệu và nhập liệu Bước 5: Phân tích tương quan hồi quy. Bước 6: Báo cáo kết quả 15 9/15/2014

  16. Ví dụ Yi = β1 + β2X1 + β3X2 + β4X3 + β5X4 + β6X5 + β7X6 + ei Với: Yi: Lợi nhuận bình quân (triệu đồng) X1: Vốn kinh doanh hiện tại (triệu đồng) X2: Tài sản cố định (triệu đồng) X3: Tuổi chủ nhiêm HTX (tuổi) X4: Chuyên môn của chủ nhiệm HTX X5: Lương của chủ nhiệm HTX (triệu đồng) X6: Quan tâm của chính quyền địa phương đối với hoạt động của HTX 16 9/15/2014

  17. Kết quả chạy phần mềm SPSS 17 9/15/2014

  18. Kết quả chạy phần mềm SPSS 18 9/15/2014

  19. Kết quả dự báo bằng phần mềm SPSS 19 9/15/2014

  20. ĐA CỘNG TUYẾN 1. TỔNG QUAN VỀ ĐA CỘNG TUYẾN Đa cộng tuyến là sự tồn tại mối quan hệ tuyến tính “hoàn hảo” hoặc chính xác giữa một số hoặc tất cả các biến giải thích trong một mô hình hồi quy. 20 9/15/2014

  21. 2. HẬU QUẢ CỦA ĐA CỘNG TUYẾN Không xác định được hệ số quan hệ  Độ lệch chuẩn của hệ số hồi quy ước lượng sẽ rất lớn. Điều này có nghĩa là ước lượng của chúng ta kém chính xác và khoảng tin cậy sẽ rộng hơn Khi độ lệch chuẩn của hệ số hồi quy ước lượng lớn, giá trị t-test thường nhỏ nhưng mô hình lại thường có R2 cao nên ta dễ đưa ra các quyết định sai lầm về độ tốt của mô hình hồi quy Ước lượng hệ số hồi quy sẽ dễ bị thay đổi khi ta bỏ một vài quan sát hay bỏ một biến độc lập được cho là không có giá trị. 21 9/15/2014

  22. 3. CÁCH PHÁT HIỆN HIỆN TƯỢNG ĐA CỘNG TUYẾN Cách 1: Một cách đơn giản để xác định đa cộng tuyến là ta tính hệ số tương quan giữa các cặp biến độc lập. Nếu ta thấy hệ số tương quan trên 0,8, ta có thể coi đó là quan hệ gần như hoàn hảo. Nếu ta thấy hệ số tương quan trên 0,5, ta có thể coi đó là quan hệ chặt chẽ 22 9/15/2014

  23. 3. CÁCH PHÁT HIỆN HIỆN TƯỢNG ĐA CỘNG TUYẾN Cách 2: Sử dụng yếu tố phóng đại phương sai (VIF): Nếu VIF > 10 thì xảy ra hiện tượng đa cộng tuyến. 23 9/15/2014

  24. 4. CÁCH KHẮC PHỤC HIỆN TƯỢNG ĐA CỘNG TUYẾN Thu thập thêm dữ liệu hoặc thu thập dữ liệu chính xác hơn Tái cấu trúc mô hình bằng cách đưa thêm thông tin bổ trợ vào Xác định cặp biến độc lập nào có quan hệ gần hoàn hảo, ta có thể bỏ bớt một biến độc lập. Tính R2 đối với các hàm hồi quy: có mặt cả hai biến; không có mặt một trong hai biến. Ta loại biến mà giá trị R2 tính được khi không có mặt biến đó là lớn hơn 24 9/15/2014

  25. PHƯƠNG SAI SAI SỐ THAY ĐỔI VÀ HẬU QUẢ 1. TỔNG QUAN VỀ PHƯƠNG SAI SAI SỐ THAY ĐỔI 25 9/15/2014

  26. 2. HẬU QUẢ CỦA PHƯƠNG SAI SAI SỐ THAY ĐỔI Ước lượng OLS vẫn tuyến tính, chúng vẫn là ước lượng không chệch. Tuy nhiên, chúng sẽ không còn có phương sai nhỏ nhất nữa Công thức thông thường để ước lượng phương sai của ước lượng OLS, nhìn chung, sẽ chệch Theo đó, các khoảng tin cậy và kiểm định giả thuyết thông thường dựa trên phân phối t và F sẽ không còn đáng tin cậy nữa 26 9/15/2014

  27. CÁCH PHÁT HIỆN VÀ KHẮC PHỤC PHƯƠNG SAI SAI SỐ THAY ĐỔI 1. CÁCH PHÁT HIỆN PHƯƠNG SAI SAI SỐ THAY ĐỔI 1.1. Xem xét đồ thị của phần sai số 27 9/15/2014

  28. 1.2. Kiểm định Park Park cho rằng i2 là một hàm số nào đó của biến giải thích X. Trong trường hợp mô hình hai biến, Park đã đưa ra dạng hàm số giữa i2 và X như sau: lni2 = 1 + 2lnXi + vi (1) Park đã đề nghị chúng ta có thể sử dụng ei thay cho i và chạy mô hình hồi quy sau: lnei2 = 1 + 2lnXi + vi (2) ei2 có thể được thu thập từ mô hình hồi quy gốc. Theo đó, kiểm định Park được tiến hành theo các bước sau đây: 28 9/15/2014

  29. 1.2. Kiểm định Park

  30. 1.3. Kiểm định Glejser

  31. 1.4. Kiểm định tương quan hạng của Spearman

  32. 1.4. Kiểm định tương quan hạng của Spearman

  33. Kết quả phát hiện PSSSTĐ bằng SPSS H0: Hệ số tương quan hạng của tổng thể bằng 0 Nhìn vào giá trị sig. của kiểm định là 0,489 > mức ý nghĩa  = 5%  Chấp nhận giả thuyết H0, tức là mô hình không xảy ra hiện tượng phương sai sai số thay đổi.

  34. 1.5. Kiểm định Goldfeld – Quandt

  35. 1.5. Kiểm định Goldfeld – Quandt

  36. 1.5. Kiểm định Goldfeld – Quandt

  37. 2. CÁCH KHẮC PHỤC PHƯƠNG SAI SAI SỐ THAY ĐỔI

  38. 2. CÁCH KHẮC PHỤC PHƯƠNG SAI SAI SỐ THAY ĐỔI

  39. 2. CÁCH KHẮC PHỤC PHƯƠNG SAI SAI SỐ THAY ĐỔI

  40. 2. CÁCH KHẮC PHỤC PHƯƠNG SAI SAI SỐ THAY ĐỔI

  41. 2. CÁCH KHẮC PHỤC PHƯƠNG SAI SAI SỐ THAY ĐỔI

  42. 2. CÁCH KHẮC PHỤC PHƯƠNG SAI SAI SỐ THAY ĐỔI

  43. HIỆN TƯỢNG TỰ TƯƠNG QUAN 1. TỔNG QUAN VỀ TỰ TƯƠNG QUAN Thuật ngữ tự tương quan có thể được định nghĩa như là “quan hệ tương quan giữa các thành viên của chuỗi của các quan sát được sắp xếp theo thời gian [như trong dữ liệu chuỗi thời gian] hoặc không gian [như trong dữ liệu chéo].”

  44. 1. TỔNG QUAN VỀ TỰ TƯƠNG QUAN Hình 1: Các dạng phân phối của sai số ui hoặc (ei)

  45. *Nguyên nhân của sự tự tương quan Tính ì Hiện tượng mạng nhện Các độ trễ Xử lí số liệu Một cách xử lý khác là phép nội suy và ngoại suy số liệu Sai lệch do lập mô hình

  46. 2. HẬU QUẢ CỦA TỰ TƯƠNG QUAN Ước lượng hệ số hồi quy vẫn là ước lượng không thiên lệch, nhưng không còn là ước lượng hiệu quả nhất Công thức ta dùng để tính phương sai ở các chương trước không thể áp dụng trong trừơng hợp này. Do đó, kiểm định giả thuyết, tính khoảng tin cậy, khoảng dự báo sẽ sai.

  47. CÁCH PHÁT HIỆN VÀ KHẮC PHỤC TỰ TƯƠNG QUAN 1. CÁCH PHÁT HIỆN TỰ TƯƠNG QUAN

  48. 1. CÁCH PHÁT HIỆN TỰ TƯƠNG QUAN

  49. 1. CÁCH PHÁT HIỆN TỰ TƯƠNG QUAN

  50. 1. CÁCH PHÁT HIỆN TỰ TƯƠNG QUAN

More Related