220 likes | 390 Views
Hadron Yields, Hadrochemistry, and Hadronization in High Energy Nuclear Collisions. Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration. Outline. Introduction / Motivation Statistical Model - T ch , B , g s Experimental Results (SPS, RHIC, …)
E N D
Hadron Yields, Hadrochemistry, and Hadronization in High Energy Nuclear Collisions Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration
Outline • Introduction / Motivation • Statistical Model - Tch, B, gs • Experimental Results (SPS, RHIC, …) • Multi-strange hadron spectra and partonic collectivity • Summary
Heavy Ion Collisions Time • 1) Initial condition: 2) System evolves: 3) Bulk freeze-out • Baryon transfer - parton/hadron expansion - hadronic dof • - ET production - inel. interactions cease: • Partonic dof particle ratios, Tch, mB • - elas. interactions cease • Paticle spectra, Tth, <bT> Plot: Steffen A. Bass, Duke University
Collision Geometry z Au + Au sNN = 200 GeV x Non-central Collisions Uncorrected • No direct measure of impact parameter • Use track multiplicity to define collision centrality
Particle Identification (ds) (ss) (uds) (dss) (sss) Identify (multi-)strange particles in full azimuthal acceptance of STAR!
Chemical Freeze-out Model Refs. J.Rafelski PLB(1991)333 P. Braun-Munzinger et al., nucl-th/0304013 Hadron resonance ideal gas Density of particle i Qi : 1 for u and d, -1 for u and d si : 1 for s, -1 for s gi:spin-isospin freedom mi : particle mass Tch : Chemical freeze-out temperature mq : light-quark chemical potential ms : strange-quark chemical potential V : volume term, drops out for ratios! gs : strangeness under-saturation factor All resonances and unstable particles are decayed Compare particle ratios to experimental data
Central Collisions at RHIC Au+Au @130GeV P. Braun-Munzinger et al., nucl-th/0304013. • Particle ratios vary by factor ~100 • Statistical model reproduces data well, c2= /dof • Tch = 170 10 MeV, mB = 4010 MeV; ms = f(mB), gs 1 • Strangeness fully equilibrated at RHIC!
At RHIC, Au+Au@130GeV • hadronization occurs at Tch17010 MeV • full strangeness equilibration in central collisions, gs = 1 ! Centrality Dependence* *M. Kaneta, QM2002, Nantes, France. Red: fit with multi-strange hadrons Blue: fit w/o multi-strange hadrons
Beam-Energy Dependence Temperature (GeV) Chemical potential (MeV) Bombarding energies Bombarding energies With higher collision energies: Tchsaturates close to phase boundary, mB decreases approaching net-baryon free! At RHIC, gs = 1.0 (at SPS: 0.75) full strangeness equilibration at RHIC
Lattice QCD predictions Neutron star Chemical Freeze-out Systematics At SPS and RHIC: hadron yields freeze-out close to phase boundary ! Approaching net-baryon free !
Chemical Freeze-out (cont’d) • Inelastic interactions cease at <E>/<N> = 1GeV* • At RHIC, chemical and critical conditions coincide Inelastic interactions reduced at RHIC? Temperature (MeV) <E>/<N> = 1GeV Baryon-Chemical potential mB(GeV) *J. Cleymans and K. Redlich, Phys. Rev. Lett. 81, 5284 (1998).
Resonance Ratios • K* lifetime ~ 4fm/c • K* K + p • K*/K ratio decreases by factor two hadronic re-scattering ! measure more resonances to study collision dynamics
Elementary p+p Collisions • Low multiplicities use canonical esemble • Strangeness has to be conserved locally • particle yields are well reproduced • Strangeness not equilibrated !(gs = 0.5) Statistical Model Fit: F. Becattini and U. Heinz, Z. Phys. C 76, 269 (1997).
Hadron Yields • At RHIC: - chemical freeze-out close to phase boundary,Tch ~17010 MeV- approaching net-baryon free,mB = 4010 MeV- full strangeness equilibration! • AT SPS: - strangeness not fully equilibrated (gs = 0.75) • Information about pre-hadronic phase?
Pressure, Flow, … • Thermodynamic identity • – entropy p – pressure U – energy V – volume t = kBT, thermal energy per dof • In A+A collisions, interactions among constituentsand density distribution lead to: pressure gradient collective flow • number of degrees of freedom (dof) • Equation of State (EOS) • cumulative – partonic + hadronic
1) Compare to p, K, and p, multi-strange particles , are found at higher T and lower <T> Collectivity prior to hadronization 2) Sudden single freeze-out* Resonance decay lower Tfo for (p, K, p) Collectivity prior to hadronization Partonic Collectivity ! Kinetic Freeze-out Data: STAR preliminary Au+Au@200GeV: Nucl. Phys. A715, 129c(2003). *A. Baran, W. Broniowski and W. Florkowski; nucl-th/0305075
Slope Parameters vs Mass • Small X-section limit: , J/y sensitive to collectivity at parton level? • At high energy, high gluon density leads to parton flow
Elliptic Flow, v2 coordinate-space-anisotropy momentum-space-anisotropy y py px x Initial/final conditions, dof, EOS
Multi-Strange Baryons v2 • Multi-strange baryons show collectivity ! • Partonic collectivity at RHIC!
Quark Coalescence • Exp. data consistent with quark coalescence scenario • Partonic collectivity at RHIC! • Pentaquark q+(uudds), n=5 ? • Z. Lin et al., PRL, 89, 202302(02) • R. Fries et al., nucl-th/0301087 • D. Molnar et al. nucl-th/0302014
Summary • Statistical model describes hadron production at RHIC Tch ~17010MeV, mB = 4010 MeV • strangeness fully equilibrated • Partonic Collectivity / Quark Coalescence ! • Measure centrality dependence yields, spectra and v2of f, K*, X,W, …, D0, Ds, Lc, q+- to confirm partonic collectivity -probe thermalization