370 likes | 394 Views
Expander Graphs, Randomness Extractors and List-Decodable Codes. Salil Vadhan Harvard University Joint work with Venkat Guruswami (UW) & Chris Umans (Caltech). Connections in Pseudorandomness. List-Decodable Error-Correcting Codes. Pseudorandom Generators. [PV05,GR06]. This Work.
E N D
Expander Graphs,Randomness Extractorsand List-Decodable Codes Salil VadhanHarvard University Joint work with Venkat Guruswami (UW) & Chris Umans (Caltech)
Connections in Pseudorandomness List-DecodableError-Correcting Codes PseudorandomGenerators [PV05,GR06] This Work [Tre99,TZ01,TZS01,SU01] [Tre99,RRV99,ISW99,SU01,U02] RandomnessExtractors This Work [GW94,WZ95,TUZ01,RVW00,CRVW02] [CW89,Z96] Expander Graphs Samplers
Outline • Expander Construction • Application to Extractors • Connections • Conclusions
S, |S| K D (Bipartite) Expander Graphs N Goals: • Minimize D • Maximize A • Minimize M M “(K,A) expander” |(S)| A¢|S| Nonconstructive: • D = O(log(N/M)/) • A = (1-)¢D • M = O(KD/) O(1) if M=N = (log N) if M·pN
Applications of Expanders • Fault-tolerant networks (e.g., [Pin73,Chu78,GG81]) • Sorting in parallel [AKS83] • Complexity theory [Val77,Urq87] • Derandomization [AKS87,INW94,Rei05,…] • Randomness extractors [CW89,GW94,TUZ01,RVW00] • Ramsey theory [Alo86] • Error-correcting codes [Gal63,Tan81,SS94,Spi95,LMSS01] • Distributed routing in networks [PU89,ALM96,BFU99]. • Data structures [BMRS00]. • Distributed storage schemes [UW87]. • Hard tautologies in proof complexity [BW99,ABRW00,AR01]. • Other areas of Math [KR83,Lub94,Gro00,LP01] Need explicit constructions (deterministic, time poly(log N)).
S, |S| K Advantage of Expansion (1-)¢D • At least (1-2) D |S| elements of (S) areunique neighbors: touch exactly one edge from S N M |(S)| (1-) D |S| x D • Fault tolerance: Even if an adversary removes most (say ¾) edges from each vertex, lossless expansion maintained (with =4)
D Application to Data Structures [BMRS00] N M • Goal: store small S½[N] s.t. can test membership by (probabilistically) reading 1 bit. • Expansion (1-)¢D )9 0,1 assignment to [M] s.t. for every x2[N], a 1-O() fraction of neighbors have correct answer! 0 0 0 1 S, |S| K /2 1 |(S)| (1-)¢D¢|S| 0 1 1 0
D Application to Data Structures [BMRS00] N M Size: M=O(K¢ log N) with optimal expander • (K¢log N) necessary to represent set. • Perfect hashing: same size, but read O(log N)-bit word 0 0 0 1 S, |S| K /2 1 0 1 1 0
Explicit Constructions |right-side| M degree D expansion A >0 arbitrary constant. quasipoly(t)=exp(polylog t)
S, |S| K D Our Result N M Thm: For every N, K, >0, 9explicit (K,A)expander with • degree D = poly(log N, 1/) • expansion A = (1-)¢D • #right vertices M = D2¢K1.01. |(S)| A¢|S|
Our Construction Left vertices = Fqn= polys of degree ·n-1 over Fq Degree = q Right vertices = Fqm+1 (f,y) =y’th neighbor of f =(y, f(y), (fh mod E)(y), (fh2 mod E)(y), …, (fhm-1 mod E)(y)) where E(Y) = irreducible poly of degree nh = a parameter Thm: This is a (K,A) expander with K=hm, A = q-hnm.
Setting Parameters (f,y) =(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y)) f = poly of degree ·n-1, E = irreducible of degree n N =Fqn , D =q, M =Fqm+1 Thm: This is a (K,A) expander with K=hm, A = q-hnm. Set h = poly(nm/), q = h1.01. Then: • D = q = poly(log N, 1/) • A = q-hnm ¸ (1-)¢ D • M = qm+1 = q¢ (h1.01)m = D¢ K1.01
Rel’n to Parvaresh-Vardy Codes [PV05] (f,y) =(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y)) f = poly of degree ·n-1, E = irreducible of degree n Thm: This is a (K,A) expander with K=hm, A = q-hnm. • (f,y) = (y, y’th symbol of PV encoding f) • Proof of expansion inspired by list-decoding algorithm for PV codes.
D List-Decoding View of Expanders N • For Tµ [M], define LIST(T) = {x2 [N] : (x)µT} • Lemma: G is a (=K,A) expander iff for all Tµ [M] of size AK-1, we have |LIST(T)| · K-1 M “(=K,A) expander” S, |S|=K |(S)| A¢ K
Comparing List-Decoding Views : [N] £ [D]! [D]£[M] T µ [D]£[M]
Proof of Expansion (f,y) =(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y)) f = poly of degree ·n-1, E = irreducible of degree n Thm:For A=q-nmh and any K·hm, we have TµFqm+1 of size AK-1)|LIST(T)|· K-1 Proof Outline (following [S97,GS99,PV05]): • Find a low-degree poly Q vanishing on T. • Show that every f 2LIST(T) is a “root” of a related polynomial Q’. • Show that deg(Q’) · K-1 =
Proof of Expansion: Step 1 (f,y) =(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y)) f = poly of degree ·n-1, E = irreducible of degree n Thm: ForA=q-nmh, K=hm, |T|·AK-1)|LIST(T)|· K-1. Step 1: Find a low-degree poly Q vanishing on T. • Take Q(Y,Z1,…,Zm) to be of degree ·A-1 in Y,degree · h-1 in each Zi. • # coefficients = A K > |T| = # constraints ) nonzero solution • WLOG E(Y) doesn’t divide Q(Y,Z1,…,Zm).
Proof of Expansion: Step 2 (f,y) =(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y)) f = poly of degree ·n-1, E = irreducible of degree n Thm: ForA=q-nmh, K=hm, |T|·AK-1)|LIST(T)|· K-1. Step 1: 9Q vanishing on T, deg ·A-1 in Y, h-1 in Zi, E-Q Step 2: Every f 2LIST(T) is a “root” of a related Q’. f(Y) 2LIST(T) ) 8 y2Fq Q(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y))= 0 ) Q(Y, f(Y), (fh mod E)(Y), …, (fhm-1 mod E)(Y)) 0 ) Q(Y, f(Y), f(Y)h, …, f(Y)hm-1) 0 (mod E(Y)) ) Q’(f) = 0 in Fq[Y]/E(Y), whereQ’(Z) = Q(Y,Z,Zh,…,Zhm-1) mod E(Y)
Proof of Expansion: Step 3 (f,y) =(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y)) f = poly of degree ·n-1, E = irreducible of degree n Thm: ForA=q-nmh, K=hm, |T|·AK-1)|LIST(T)|· K-1. Step 1: 9Q vanishing on T, deg ·A-1 in Y, h-1 in Zi, E-Q Step 2: 8 f2LIST(T)Q’(f) = 0 where Q’(Z) = Q(Y,Z,Zh,…,Zhm-1) mod E(Y) Step 3:Show that deg(Q’) · K-1 • Q’(Z) nonzerobecause Q(Y,Z1,….,Zm) not divisible by E(Y) & is of deg ·h-1 in Zi • deg(Q’(Z)) · h-1+(h-1)¢ h++(h-1)¢ hm-1 = hm-1 = K-1
Proof of Expansion: Wrap-Up (f,y) =(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y)) f = poly of degree ·n-1, E = irreducible of degree n Thm: ForA=q-nmh, K=hm, |T|·AK-1)|LIST(T)|· K-1. Step 1: 9Q vanishing on T, deg ·A-1 in Y, h-1 in Zi, E-Q Step 2: 8 f2LIST(T)Q’(f) = 0 where Q’(Z) = Q(Y,Z,Zh,…,Zhm-1) mod E(Y) Step 3:Show that deg(Q’) · K-1 Proof of Thm: |LIST(T)| · deg(Q’) · K-1. ¥
S, |S| K D Our Result N M Thm: For every N, K, >0, 9explicit (K,A)expander with • degree D = poly(log N, 1/) • expansion A = (1-)¢D • #right vertices M = D2¢K1.01. |(S)| A¢|S|
Outline • Expander Construction • Application to Extractors • Connections • Conclusions
Extractors: Original Motivation[SV84,Vaz85,VV85,CG85,Vaz87,CW89,Zuc90,Zuc91] • Randomization is pervasive in CS • Algorithm design, cryptography, distributed computing, … • Typically assume perfect random source. • Unbiased, independent random bits • Unrealistic? • Can we use a “weak” random source? • Source of biased & correlated bits. • More realistic model of physical sources. • (Randomness) Extractors: convert a weak random source into an almost-perfect random source.
Applications of Extractors • Derandomization of (poly-time/log-space) algorithms [Sip88,NZ93,INW94, GZ97,RR99, MV99,STV99,GW02] • Distributed & Network Algorithms[WZ95,Zuc97,RZ98,Ind02]. • Hardness of Approximation [Zuc93,Uma99,MU01,Zuc06] • Data Structures [Ta02] • Cryptography [BBR85,HILL89,CDHKS00,Lu02,DRS04,NV04] • Metric Embeddings [Ind06]
Extractors [NZ93] k-source of length n • Def: A (k,e)-extractor is Ext : {0,1}n£{0,1}d!{0,1}m s.t. 8k-source X, Ext(X,Ud) is e-close to Um. “seed” EXT drandom bits in variationdistance malmost-uniform bits 8x Pr[X=x]·2-k • Optimal (nonconstructive): d = log(n-k)+2log(1/)+O(1)m = k+d-2log(1/)-O(1)
Our Result k-source of length n Thm: For every n, k, >0, 9 explicit (k,) extractor with seed length d=O(log(n/)) and output length m=.99k. • Previously achieved by [LRVW03] • Only worked for ¸ 1/no(1) • Complicated recursive construction “seed” EXT drandom bits malmost-uniform bits
Approach: Condensers [RR99,RSW00] k-source of length n Def: A k! k’ condenser is Con : {0,1}n£{0,1}d!{0,1}m s.t. 8k-source X, Con(X,Ud) e-close to some k’-source. • Can extract from output: easier if k’/m > k/n. • Called lossless if k’=k+d. “seed” CON drandom bits ¼k’-source of length m
Lossless Condensers Expanders 2k {0,1}n x n-bit k-source Lemma [TUZ01]:Con :{0,1}n£{0,1}d!{0,1}m is a k! k+d condenser iff it defines a (2k,(1-)¢2d) expander. Proof ((): • Suffices to condense sources uniform on 2k strings. • Expansion ) can make 1-1 by moving fraction of edges 2d CON y d-bit seed {0,1}m ¼ m-bit (k+d)-source Con(x,y) ¸ (1-) 2d¢ 2k
Our Condenser Thm: For every N, K, >0, 9explicit (K,A)expander with • degree D = poly(log N, 1/) • expansion A = (1-)¢D • #right vertices M = D2¢K1.01.(f,y) =(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y)) Thm: For every n, k, >0, 9explicit k! k+d condenser w/ • seed length d = O(log n+log(1/)) • output length m=2d+1.01¢k • Con(f,y) =(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y))
Our Extractor Condense:9explicit k! k+d condenser w/ • seed length d = O(log n+log(1/)) • output length m ¼ 1.01k • Con(f,y) =(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y)) Then Extract: apply extractor for min-entropy rate .99: • Constant • Ext(x,y) = y’th vertex on expander walk specified by x. • Extraction follows from Chernoff bound for expander walks [G98], via equivalence of extractors and samplers [Z96].
Our Extractor Condense:9explicit k! k+d condenser w/ • seed length d = O(log n+log(1/)) • output length m ¼ 1.01k • Con(f,y) =(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y)) Then Extract: apply extractor for min-entropy rate .99: • Arbitrary : • Zuckerman’s extractor for constant min-entropy rate [Z96].
Variations on the Condenser Thm: 9explicit k! k+d condenser w/ • seed length d = O(log n+log(1/)) • output length m ¼ 1.01k • Con(f,y) =(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y)) Variations (lose constant fraction of min-entropy): • “Repeated roots” [GS99] in analysis • seed length d = log n+log(1/)+O(1) • output length m = O(k ¢ log(n/))
Variations on the Condenser Thm: 9explicit k! k+d condenser w/ • seed length d = O(log n+log(1/)) • output length m ¼ 1.01k • Con(f,y) =(y, f(y), (fh mod E)(y), …, (fhm-1 mod E)(y)) Variations (lose constant fraction of min-entropy): • E(Y) = Yq-1 - , for primitive root [GR06]) (fhimod E)(y) = f (i y)) univariate analogue of Shaltiel-Umans extractor [SU01].
Outline • Expander Construction • Application to Extractors • Connections • Conclusions
Comparing List-Decoding Views : {0,1}n£{0,1}d ! {0,1}d £{0,1}m T µ {0,1}d£ {0,1}m N=2n,D=2d,…
Outline • Expander Construction • Application to Extractors • Connections • Conclusions
Conclusions • List-decoding view ) best known constructions of • Highly unbalanced expanders • Lossless condensers • Randomness extractors • Push it further? • Nonbipartite expanders • Direct construction of extractor • Extractors optimal up to additive constants • Better list-decodable codes