810 likes | 1.55k Views
Richard rogers. Nishith Singh, b arch (4th yr.). About. Born 23 july 1933 in Florence,Italy. Career. Attended the Architectural Association School of Architecture in London, before graduating from Yale School of Architecture in 1962.
E N D
Richard rogers Nishith Singh, b arch (4th yr.)
About • Born 23 july 1933 in Florence,Italy.
Career • Attended the Architectural Association School of Architecture in London, before graduating from Yale School of Architecture in 1962. • At Yale he met fellow students Jesse Mccartney & Norman Foster and on returning to England he set up architectural practice as Team 4 with Foster and their respective girlfriends, the sisters Georgie and Wendy Cheesman. • In 1967 the practice split up,and Rogers joined Renzo Piano. • After working with Piano, Rogers established the Richard Rogers Partnership in 1976. This became Rogers StirkHarbour + Partners in 2007. The firm maintains offices in London, Barcelona, Madrid, and Tokyo.
Honours • Rogers was knighted in 1991 by Queen Elizabeth II. He was awarded the RIBA Royal Gold Medal in 1985. He received a Golden Lion for Lifetime Achievement at the 10th MostradiArchitetturadiVenezia. In 2006, he was awarded the Stirling Prize for Terminal 4 of Barajas Airport and in 2009, for Maggie's Centre in London • He was created Baron Rogers of Riverside, of Chelsea in 1996. He sits as a Labour Peer in the House of Lords. • Rogers has been awarded honorary degrees from Oxford Brookes University and the University of Kent, and was awarded the 2007 Pritzker Prize, architecture's highest honour. • Rogers was appointed Companion of Honour (CH) in the 2008 Birthday Honours.
Theory • Cities: are the physical framework of our society, the generator of civil values, the engine of our economy and the heart of our culture. • Public domain: Public space between buildings influences both the built form and the civic quality of the city, be they streets, squares or parks. A balance between the public and private domain is central to the practice's design approach. • Legibility: The structure of buildings set the scale, form and rhythm of the architectural environment, within which change and improvisation can take place. • Flexibility:Today's buildings are more like evolving landscapes than classical temples in which nothing can be added and nothing can be removed. • Energy: Architects have a major role to play, given the fact that 75 per cent of global energy consumption is produced by buildings and transportation.
Section • 1reception • 2.exhibition • 3.underwriters • 4.viewing gallery • 5atrium • 6.office • 7.roof terrace • 8.cloakrooms • 9.plant
Lowerbasement plan • 1.Boiler • 2.substation • 3generator • 4chillers • 5maintainance staff • 6air handling plant • 7strong room • 8goods lift • 9vehicledock • 10vehicle lift • 11Squash court
Upper basement plan • Staff mess room • Mail room • Female • Male lavotories • Cleaners • Liveried staff • Telephone exchange • Offices • cloakroom • kitchen • Black box park • Old special dining
Lower ground level plan • Staff mess room • 2 . mail room • 3. female lovatories • 4.male lovatories • 5.maintainence • 6.cleaners • 7.liveried staff • 8.telephone exchange • 9.offices • 10.cloakrooms • 11.kitchens • 12. black box park • 13.old special dining room
Ground level plan • Underwriters entrance • Restaurant • Bar • Kitchen • Conference room • Exhibition space • library
Galleries 5and 6 • 1.Atrium • 2.Office space
Galleries 11 • Atrium • Special dining room • Adam room
Client: Corporation of Lloyd's of London Bussiness nature: Insurance Design Team: Richard Rogers Partnership Structural Engineer: Ove Arup & Partners Services Engineer: Ove Arup & Partners Quantity Surveyor: Monk Dunstone Mahon & Sears Lighting: Friederich Wagner of Liccttehnische Planung Acoustics: Sandy Brown Associates General information
Leadenhall Street in the heart of the financial district of the city of London. The site is awkwardly shaped due to the medieval character of London’s street plan. Typical of medieval streets, the streets surrounding the Lloyds Building are tight and winding, providing a sharp contrast between solid and void, between building and street. site
Lloyds Building 1978-86, London Description The Lloyds Building, consisting of twelve stories to the north, stepping down to six stories to the south, was a replacement for the previous buildings which Lloyds of London occupied but found to be too small for its continued growth. Presently, the Lloyds Building with its 52,200 square metres gross area (37,500 square metres net area) is a 66 percent increase over the Cooper buildings it replaced. "The Room" takes all the area of the ground floor and extends into the upper second, third, and fourth floors. Office spaces take up the remaining upper floors. General information
Requirements The Room –required large open adaptive space Dating back to the 17th century, Lloyds of London has today transformed itself into a modern market place operating on the principles of a traditional market. Composed of a society of underwriters, each having their individual stall in the Lloyd's market, the efficiency and success of Lloyd's depends on the interaction between individuals and in the contact gained from working in a large open space, an open market, called "The Room". Expansion –continue growth leads to need of expansion and flexible structural and services layout The Corporation of Lloyds of London had already moved several times in attempt to suit its continued growth before acquiring the site on Leadenhall Street in the 1920’s. During the World War II, German bombs flattened the adjacent sites; however, the Cooper building in which Lloyds resided survived. In 1950, Lloyds, foreseeing a further need for expansion bought the surrounding sites and began to build the "new" Lloyds. This new building, completed in 1958, was linked to the 1928 building by a 38-foot bridge spanning over Lime Street. Continued growth of Lloyds quickly led them to reevaluate their situation and again look for ways to expand. By the 1960s and 1970s, the 1958 building was already too small and Lloyds now began to look at 1928 building as a possibility in meeting their expansionist ideals. The 1928 building ultimately became their solution. Although listed (grade II) by the government, it was allowed by the City to be demolished in 1981 in place of the current Lloyds Building, which was completed in 1986. General information
Strategy 1 – natural lighting Natural lighting Stepping Form The Lloyds Building, consisting of twelve stories to the north, stepping down to six stories to the south, sunlight penetration thus utilized. the incorporation of the atrium The atrium was a key feature in the reduction of the loads coming from lighting. The atrium increases in volume and surface area as it progresses toward the south. The office levels increase as the progress northward allowing a large surface area for diffused light coming from the north. A significant amount of natural lighting reaching down into "The Room" demonstrates the success in the design of the atrium. Furthermore, every location in the building is located within 7 meters from a natural source of light.
Strategy 2 – served & servant the served and servant It was Kahn’s notion of ‘served’ and ‘servant’ spaces inspired Rogers. In the case of Llyods, servant spaces concentrate in towers. Served zone Servant towers with incorporation of raised flooring system and ceiling viod
Servant tower –plan Served zone Servant towers with incorporation of raised flooring system and ceiling void The services towers, 3 of them principally for fire fighting and escape. The other 3 for lifts, lavatories and risers, are the visual expression of the Kahnian doctrine of ‘served and servant spaces’
The towers carry majors plant rooms on top Main services running vertically down the towers Tower – vertical planning The towers form a flexible framework for the ventilation plant, lifts, service risers and lavatories (all the 33 lavatory units were manufactured and fitted out) attached to them. Four towers carry major plant-rooms, with mains services running vertically down the towers and connected into each level of the building. The largest services duct contained the air-conditioning, with lesser duct for water, drains, power and electronics
All the 33 prefabricated lavatory pods were brought to the site on trucks and then hoisted into position prior to linking up to the service riser service risers with ducts for water, drains, power and electronics running vertically down the towers and connected into each level of the building Access and escape routes were provided by means of lifts and staircases The largest services duct contained the air-conditioning running vertically down the towers and connected into each level of the building. Tower – detailed layout Typical detailed layout services tower Served zone
Sub-Air conditioning Air conditioning
Air conditioning system ALUZINC duct extracting air through light fittings The extracted air is passed to the perimeter of the building and forced through the triple-layered exterior glazing – ensuring an almost zero heat loss from the offices during the winter and reducing heat gain in summer. stale air is extracted from above through the multi-function luminaries Conditioned air is distributed through a sub-floor plenum into the offices Supply ductworks Extracted ductworks Air cond. & heat cycle1 Clear double glazed window operable at office The operable window allows individuals the ability to "acquire" fresh air if the feel it necessary. The placement of the window encourages individuals to work while sitting rather than standing since that is where the views are held. It also allows interior light to be reflected back into the interior during the night and diffuses direct sunlight during the day. The need to take mechanical systems into careful consideration when designing energy conscious builidings is made evident when one compares the the overall space that they consume in a building in relation to the human being
The largest services duct contained the air-conditioning running vertically down the towers and connected into each level of the building. Air cond. Served zone
Air handling equipment is located at basement level and in four service tower plant-rooms. Air cond. & heat cycle2 The heat cycle Heat from the return air is collected in the basement sprinkler tanks and re-used. The internal concrete soffits and slabs are ‘heat sinks’, absorbing heat during occupation and being cooled off overnight using naturally chilled night air. This allow cooling to follow a 24-hour cycle and reduces the peak cooling requirement.
boiler Sub-station generators chillers Air handling plants Strategy 2 -lower Basement plant room Lower basement room provided services for lower basement level to G/F level
Access and escape routes were provided by means of lifts and staircases Fire protection Served zone
Structural system Structural system
description Description The basic form of the building is that of a large atrium, surmounted by steel and glass arched roof, surrounded by galleries (12levels of them on the north side) which contain the bulk of the underwriting space and a variable a mount of lettable space, depending on the changing accommodation need of the Llyods market itself. The floors were constructed on reinforced concrete columns on a 10.8x18metre grid. The load is transferred between the columns and the floor beams by means of a pre-casted bracket. Pre-cast ‘yokes’ cast into inverted U-beam transmit the loads of the floor grid to the perimeter columns via the brackets. The great columns, both the exterior of the building and within the atrium, stand proud of the cladding, increasing the highly articulated ‘Gothic’ effects of Llyods. External cross-braces are actually made of steel tube concrete grid open to view.
Atrium Light steel roof Design of the atrium roof A lightweight contrast to the concrete superstructure of the building
floor and column Columns, Beams and Floors The floors were constructed on reinforced concrete columns on a 10.8x18metre grid. The load is transferred between the columns and the floor beams by means of a pre-casted bracket. Pre-cast ‘yokes’ cast into inverted U-beam transmit the loads of the floor grid to the perimeter columns via the brackets. The great columns, both the exterior of the building and within the atrium, stand proud of the cladding, increasing the highly articulated ‘Gothic’ effects of Llyods. External cross-braces are actually made of steel tube concrete grid open to view. By using beams with parallel sides and sharp arises Rogers emphasizes that the floor is a grid not a solid, coffered slab
The waffle slab ‘Yokes’ concrete bracket Main concrete columns In situ concrete was latter substituted. U-beams transfer the loads of the floor grid to the columns via a bracket system
assemble Pre-cast concrete bracket and ‘yoke’ assemblies Pre-cast concrete bracket yoke
services support Services supports Axonometrics of the pre-cast concrete ‘kit of parts’ for the sevices towers
Sectional detail - structure section Pre-cast concrete bracket In situ concrete beam In-situ concrete column 100mm in situ concrete slab Permanent steel formwork incorporating acoustic panel Painted ductwork support bracket Anodized Aluminum wind bracing
Photos Photos
Photos – atrium A significant amount of natural lighting reaching down into G/F demonstrates the success in the design of the atrium.
Photos -connection of the services mains services running vertically down the towers and connected into each level of the building through the raised floor and ceiling void.
photos - services The layers of structure, services and cladding articulate the elevation
Photos – raised flooring system & ceiling void Servant towerswith incorporation of raised flooring system and ceiling void
Photos – prefabricated lav. All the 33 prefabricated lavatory pods were brought to the site on trucks and then hoisted into position prior to linking up to the service riser
THANK YOU submitted by: Nishith Singh, b arch (4th yr.)