1 / 29

Bill Madden 559 2123

Bill Madden 559 2123.  = ( 4  /3ħc )  n   e  m  2  ( N m -N n )  (  o - ) 1 2 3 4 Square of the transition moment  n   e  m  2 Frequency of the light  Population difference ( N m - N n )

anations
Download Presentation

Bill Madden 559 2123

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bill Madden 559 2123

  2.  = (4/3ħc) nem2 (Nm-Nn) (o-) 1 2 3 4 • Square of the transition moment nem2 • Frequency of the light  • Population difference (Nm- Nn) • Resonance factor - Dirac delta function (0) = 1

  3. Fermi’s Golden Rule  = (4/3ħc) nem2 (Nm-Nn) (o-) 1

  4. Take Home Message n*md  nm ~ d/dq Quantum Mechanics Matrix Mechanics Dirac Notation Quantum Mechanics Wave Mechanics Schrödinger Notation Classical Analogue Dipole moment change over motion …coordinate q

  5. Take Home Message n*md  nm ~ d/dq ~ Quantum Mechanics Matrix Mechanics Dirac Notation Quantum Mechanics Wave Mechanics Schrödinger Notation Classical Analogue Dipole moment change over motion …coordinate q 

  6.  = (4/3ħc) nem2 (Nm-Nn)(o-) 1 2 3 4 • Square of the transition moment nem2 • Frequency of the light  • Population difference (Nm- Nn) • Resonance factor - Dirac delta function (0) = 1

  7. ABC Rotation of a Diatomic Molecule

  8. For pure rotational transitions a molecule must have a permanent dipole moment

  9. Observing the dipole change from the side i.e. the direction of propagation

  10. dμ/dθ≠ 0

  11. ∆N =? Selection Rules Harry Kroto 2004

  12. (Nm- Nn) Nm-Nm

  13. J 2J+1 e-∆E/kTNm/No F(J) 0 1 1.000 1.00 3.84 • 3 0.9812.94 7.69 • 50.9454.73 11.5 3 70.8936.25 15.4 • 90.8287.45 19.2 • 110.7548.29 23.1 • 13 0.6738.75 26.9 • 150.5908.85 30.8 • 170.5078.62 34.6 • 190.4288.13 38.4 • 22 0.355 7.46 42.3 • 230.288 6.62 46.1 • 250.230 5.75 50.0 Nm = No e-∆E/kT In the case of degenerate levels such as rotational levels eacj J level is 2J+1 degenerate we get Nm = Noe-∆E/kT

  14. 0 1 2 3 4 5 6 7 J 0 2B 4B 6B 8B 10B 12B 14B 16B Boltzmann

  15. http://en.wikipedia.org/wiki/Boltzmann_constant Boltzmann

  16. J 2J+1 e-∆E/kT Nm/No F(J) 0 1 1.000 1.00 3.84 • 30.9812.94 7.69 • 50.945 4.73 11.5 3 70.8936.25 15.4 • 90.8287.45 19.2 • 110.7548.29 23.1 • 130.6738.75 26.9 • 150.5908.85 30.8 • 170.5078.62 34.6 • 190.428 8.13 38.4 • 22 0.3557.46 42.3 • 230.2886.62 46.1 • 250.2305.75 50.0 Nm = No e-∆E/kT In the case of degenerate levels such as rotational levels eacj J level is 2J+1 degenerate we get Nm = Noe-∆E/kT

  17. 0 1 2 3 4 5 6 7 J 0 2B 4B 6B 8B 10B 12B 14B 16B Boltzmann

  18. Boltzmann Population with Degeneracy

  19. J 2J+1 e-∆E/kT Nm/No F(J) 0 1 1.000 1.00 3.84 • 3 0.981 2.94 7.69 • 5 0.945 4.73 11.5 • 7 0.893 6.25 15.4 • 9 0.828 7.45 19.2 • 11 0.754 8.29 23.1 • 13 0.673 8.75 26.9 • 15 0.590 8.85 30.8 • 17 0.507 8.62 34.6 • 19 0.428 8.13 38.4 • 22 0.355 7.46 42.3 • 23 0.288 6.62 46.1 • 25 0.230 5.75 50.0 Nm = No e-∆E/kT In the case of degenerate levels such as rotational levels each J level is 2J+1 degenerate we get Nm = No(2J+1)e-∆E/kT

  20. 0 1 2 3 4 5 6 7 J 0 2B 4B 6B 8B 10B 12B 14B 16B Boltzmann

  21. C≡O

  22. CO Rotational Spectrum PROBLEM

  23. Separation Vibration Rotation

  24. ABC H Atom

  25. H Atom Spectrum A

  26. + - Positronium

  27. n m Einstein Coefficients

  28. H 21 cm Line Harry Kroto 2004

More Related