1 / 38

MUSCLES Modelling of Un s teady Combustion in Low Emission Systems

MUSCLES Modelling of Un s teady Combustion in Low Emission Systems. G4RD-CT-2002-00644 R&T P roject within the 5 th Framework P rogram of the European Union. Time Dependent Numerical Prediction of the Reactive Flow Field Within and Downstream an Avio LPP System.

aneko
Download Presentation

MUSCLES Modelling of Un s teady Combustion in Low Emission Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MUSCLESModelling of Unsteady Combustion in Low Emission Systems G4RD-CT-2002-00644 R&T Project within the 5th Framework Program of the European Union

  2. Time Dependent Numerical Prediction of the Reactive Flow Field Within and Downstream an Avio LPP System

  3. COMPUTATIONAL GRIDS : Nozzle-Duct C05D Premixer Nozzle-Duct Premixer Grid type: Structured-Multiblock N° of total Blocks 175 Azim. angle: 360.0° N° of total cells: 225000

  4. COMPUTATIONAL GRID : Nozzle-Duct C05D Premixer & Experimental Test Rig Experimental Test Rig Zmax =158.5 mm - Xmax =53.8 mm - Ymax =53.8 mm Numerical Test Rig Grid type: Structured-Multiblock N° of total Blocks: 203 Geometry: Fully 3D° N° of total cells: 994000 Boundary Conditions Mass Flow : 0.1405 kg/s Static Temperature Inlet : 760 K Static Pressure Outlet : 650000 Pa

  5. COMPUTATIONAL CASES : Nozzle-Duct C05D Premixer Numerical Boundary Conditions - Case N° 1 - Turbulence Model : TSDIA Combustion Scheme : Standard Radiation Scheme : Off - Case N° 2- Turbulence Model : TSDIA Combustion Scheme : Standard Radiation Scheme :On - Case N° 3 - Turbulence Model : TSDIA Combustion Scheme :Detailed Radiation Scheme : Off - Case N° 4 - Turbulence Model : TSDIA Combustion Scheme : Detailed Radiation Scheme :Off Boundary Conditions AIR Total Pressure Inlet : 650000 Pa Total Temperature Inlet : 760 K Total Air Mass Flow Inlet : 0.1405 Kg/s Boundary Conditions FUEL Fuel : Kerosene Liquid [C12H23] Fuel Mass Flow Inlet : 0.005518 Kg/s Total Temperature Inlet : 380 K Droplets Diameters : 40  Cone Angle : 50° Droplets Velocity : 50 m/s

  6. COMBUSTION MODELS STANDARD Model : 12 Species - 12 Reactions Species : CH12H23 - O2 - N2 - OH - H2 - O - H2O - CO -CO2 - N - H - NO DC* Model : 41 Species - 225 Reactions Species : C12H23 - CH4 - O2 - N2 - OH - H2 - O - H2O - CO -CO2 - N - H - NO - CH3OCH3 - HO2 - H2O2 - C2H - C2H2 - C(S) - CH2O - HCO - CH3O - CH3OH - CH2OH - CH3 - CH2 - HCOOH - C2H3 - C2H4 - C2H5 - C2H6 - C3H3 - C4H2 - N2O - CH - CH2(S) - C3H2 - C3H6 - CH3CO - CH3HCO - CH2CO DC*: Detailed Chemistry

  7. STANDARD REACTIONS MECHANISM 1. 2C12H23+ 12O2= 24CO+ 23H2 2. O2+ 2N2= 2N+ 2NO 3. 2O2+ N2= 2O+ 2NO 4. N2+2OH=CO2+H 5.CO+ OH= CO2+ H 6. O2+ H= O+ OH 7. H2+ OH= H2O+ H 8. H2+ O= H+ OH 9. H2= 2H 10. O2 =2O 11. N2=2N 12. O2 + H2= 2OH 13. O2+2H2O=4OH

  8. DETAILED REACTIONS MECHANISM - 1 22. CH3 + CH3 = C2H4 + H2 23. CH3 + M = CH2 + H + M 24. CH3 + HCO = CH2 + CH2O 25. CH2 + H2 = CH3 + H 26. CH2 + CH3 = C2H4 + H 27. CH2 + OH = CH + H2O 28. CH2 + OH = CH2O + H 29. CH2 + CH2 = C2H2 + H2 30. CH2 + HCCO = C2H3 + CO 31. CH2 + O = CO + H + H 32. CH2 + O = HCO + H 33. CH2 + O2 = CO2 + H + H 34. CH2 + O2 = CH2O + O 35. CH2 + O2 = CO2 + H2 36. CH2 + O2 = HCO + OH 37. CH2(S) + CH3 = C2H4 + H 38. CH2(S) + H2 = CH3 + H 39. CH2(S) + CH4 = CH3 + CH3 40. CH2(S) + C2H6 = CH3 + C2H5 41. CH2(S) + C2H2 = C3H3 + H 42. CH2(S) + N2 = CH2 + N2 0. CH12H23 + O2 = C12H22-1 + HO2 1. CH4 + O2 = CH3 + HO2 2. CH4 + H = CH3 + H2 3. CH4 + OH = CH3 + H2O 4. CH4 + O = CH3 + OH 5. CH4 + HO2 = CH3 + H2O2 6. CH3 + HO2 = CH3O + OH 7. CH3 + O2 = CH3O + O 8. CH3 + O2 = CH2O + OH 9. CH3 + CH2O = CH4 + HCO 10. CH3 + HCO = CH4 + CO 11. CH3 + O = CH2O + H 12. CH3 + OH = CH2 + H2O 13. CH3 + OH = CH2O + H2 14. CH3 + H = CH4 15. CH3 + CH3 = C2H6 16. CH3 + CH3O = CH4 + CH2O 17. CH3 + CH2OH = CH4 + CH2O 18. CH3 + C2H5 = CH4 + C2H4 19. CH3 + C2H4 = CH4 + C2H3 20. CH3 + C2H3 = CH4 + C2H2 21. CH3 + C2H2 = CH4 + C2H

  9. DETAILED REACTIONS MECHANISM - 2 65. CH + O = CO + H 66. CH + OH = HCO + H 67. CH + CO2 = HCO + CO 68. CH + H2O = CH2O + H 69. CH + CH2O = CH2CO + H 70. CH + C2H2 = C3H2 + H 71. CH + CH2 = C2H2 + H 72. CH + CH3 = C2H3 + H 73. CH + CH4 = C2H4 + H 74. CH2O + OH = HCO + H2O 75. CH2O + H = HCO + H2 76. CH2O + M = HCO + H + M 77. CH2O + O = HCO + OH 78. CH2O + O2 = HCO + HO2 79. CH2O + HO2 = HCO + H2O2 80. CH2O + HO2 = HCOOH + OH 81. HCOOH + H = H + CO2 + H2 82. HCOOH + O = H + CO2 + OH 83. HCOOH + OH = H + CO2 + H2O 84. HCOOH + HO2 = H2O2 + CO2 + H 85. HCOOH + CH3 = CH4 + CO2 + H 86. HCOOH + CH3OCH2 = CH3OCH3 + CO2 + H 43. CH2(S) + AR = CH2 + AR 44. CH2(S) + CO2 = CH2 + CO2 45. CH2(S) + CO2 = CH2O + CO 46. CH2(S) + H2O = CH2 + H2O 47. CH2(S) + O2 = CO + OH + H 48. CH2(S) + O2 = CO + H2O 49. CH2(S) + H = CH + H2 50. CH2(S) + O = CO + H2 51. CH2OH + H = CH3 + OH 52. CH3O + H = CH3 + OH 53. CH3O + M = CH2O + H + M 54. CH2OH + M = CH2O + H + M 55. CH3O + H = CH2O + H2 56. CH2OH + H = CH2O + H2 57. CH3O + OH = CH2O + H2O 58. CH2OH + OH = CH2O + H2O 59. CH3O + O = CH2O + OH 60. CH2OH + O = CH2O + OH 61. CH3O + O2 = CH2O + HO2 62. CH2OH + O2 = CH2O + HO2 63. CH + H2 = H + CH2 64. CH + O2 = HCO + O

  10. DETAILED REACTIONS MECHANISM - 3 87. HCO + OH = H2O + CO 88. HCO + H2O = H + CO + H2O 89. HCO + M = H + CO + M 90. HCO + H = CO + H2 91. HCO + O = CO + OH 92. HCO + O = CO2 + H 93. HCO + O2 = HO2 + CO 94. HCO + HCO = CH2O + CO 95. HCO + HCO = H2 + CO + CO 96. CO + O + M = CO2 + M 97. CO + OH = CO2 + H 98. CO + O2 = CO2 + O 99. CO + HO2 = CO2 + OH 100. C2H6 + CH3 = C2H5 + CH4 101. C2H6 + H = C2H5 + H2 102. C2H6 + O = C2H5 + OH 103. C2H6 + OH = C2H5 + H2O 104. C2H4 + H = C2H3 + H2 105. C2H4 + O = CH3 + HCO 106. C2H4 + OH = C2H3 + H2O 107. C2H4 + HO2 = CH3HCO + OH 108. C2H4 + CH3O = CH3HCO + CH3 109. C2H4 + CH3O2 = CH3HCO + CH3O 110. C2H3 + OH = CH3HCO 111. C2H4 + H = C2H5 112. C2H5 + H = CH3 + CH3 113. C2H5 + O2 = C2H4 + HO2 114. C2H2 + O = CH2 + CO 115. C2H + H2 = C2H2 + H 116. C2H3 = C2H2 + H 117. C2H3 + H = C2H2 + H2 118. C2H3 + O = CH2CO + H 119. C2H3 + O2 = CH2O + HCO 120. C2H3 + O2 = C2H2 + HO2 121. C2H3 + OH = C2H2 + H2O 122. C2H3 + CH2 = C2H2 + CH3 123. C2H3 + C2H = C2H2 + C2H2 124. C2H3 + CH = CH2 + C2H2 125. C2H2 + OH = C2H + H2O 126. C2H2 + OH = CH2CO + H 127. C2H2 + OH = CH3 + CO 128. C2H2 + O = C2H + OH 129. CH2CO + O = CO2 + CH2 130. CH2CO + O = HCO + HCO

  11. DETAILED REACTIONS MECHANISM - 4 131. CH2CO + H = CH3 + CO 132. CH2CO + M = CH2 + CO + M 133. C2H + O2 = CO + CO + H 134. C2H + O = CH + CO 135. C3H3 + O2 = CH2CO + HCO 136. C3H3 + O = CH2O + C2H 137. C2H2 + O2 = HCCO + OH 138. C2H2 + M = C2H + H + M 139. C2H4 + M = C2H2 + H2 + M 140. H2 + O2 = OH + OH 141. H2 + OH = H2O + H 142. O + OH = O2 + H 143. O + H2 = OH + H 144. H + O2 + M = HO2 + M 145. H + O2 + AR = HO2 + AR 146. OH + HO2 = H2O + O2 147. H + HO2 = OH + OH 148. O + HO2 = O2 + OH 149. H2 + HO2 = H2O + OH 150. OH + OH = O + H2O 151. H + H + M1 = H2 + M1 152. H + H + H2 = H2 + H2 153. H + H + H2O = H2 + H2O 154. H + H + CO2 = H2 + CO2 155. H + OH + M = H2O + M 156. H + O + M = OH + M 157. O + O + M = O2 + M 158. H + HO2 = H2 + O2 159. HO2 + HO2 = H2O2 + O2 160. H2O2 + M = OH + OH + M 161. H2O2 + H = HO2 + H2 162. H2O2 + OH = H2O + HO2 163. H + HO2 = O + H2O 164. O + OH + M = HO2 + M 165. H2O2 + H = H2O + OH 166. H2O2 + O = H2O + O2 167. H2O2 + O = OH + HO2 168. CH3CO + H = CH2CO + H2 169. CH3CO + O = CH3 + CO2 170. CH3CO + CH3 = C2H6 + CO 171. CH3CO = CH3 + CO 172. C2H6 + O2 = C2H5 + HO2 173. C2H4 + O2 = C2H3 + HO2 174. C2H5 + HO2 = C2H4 + H2O2 175. CH3OH = CH2OH + H 176. CH3OH = CH3O + H 177. CH3OH = CH3 + OH 178. CH3OH + O2 = CH2OH + HO2

  12. DETAILED REACTIONS MECHANISM - 5 179. CH3OH + H = CH2OH + H2 180. CH3OH + H = CH3O + H2 181. CH3OH + O = OH + CH2OH 182. CH3OH + O = OH + CH3O 183. CH3OH + OH = CH2OH + H2O 184. CH3OH + OH = CH3O + H2O 185. CH3OH + HO2 = CH2OH + H2O2 186. CH3OH + CH3 = CH2OH + CH4 187. CH3OH + CH3 = CH3O + CH4 188. CH3OH + CH3O = CH3OH + CH2OH 189. CH3O + CH3O = CH3OH + CH2O 190. CH2OH + CH2OH = CH3OH + CH2O 191. CH2OH + HCO = CH3OH + CO 192. CH3HCO = CH3 + HCO 193. CH3HCO = CH3CO + H 194. CH3HCO + O2 = CH3CO + HO2 195. CH3HCO + H = CH3CO + H2 196. CH3HCO + OH = CH3CO + H2O 197. CH3HCO + O = CH3CO + OH 198. CH3HCO + CH3 = CH3CO + CH4 199. CH3HCO + HO2 = CH3CO + H2O2 200. CH3OCH3 = CH3+CH3O 201. C3H3 + OH = C3H2 + H2O 202. C2H6 + CH = H + C3H6 203. C3H6 + O = CH3CO + CH3 204. C3H6 + O = C2H5 + HCO 205. CH3 + C2H3 = C3H6 206. C2H6 + O2 = C2H5 + HO2 207. C2H4 + O2 = C2H3 + HO2 208. C2H5 + HO2 = C2H4 + H2O2 209. C3H6 + O = CH2O + C2H4 210. C3H6 + OH = CH3 + CH3HCO 211. C3H6 + OH = C2H5 + CH2O 312. C3H3 + C3H3 = C6H5 + H 213. C(S) + O2 = O + CO 214. C(S) + CH3 = H + C2H2 215. C(S) + OH = CO + H 216. C(S) + NO = CO + N 217. N + CO2 = NO + CO 218. N2 + O = NO + N 219. N + O2 = NO + O 220. NO + M = N + O + M 221. NO + NO = N2 + O2 222. N2O + M = N2 + O + M 223. N2O + O = N2 + O2 224. N2O + O = NO + NO 225. N2O + N = N2 + NO

  13. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer - Case N° 1 - Boundary Conditions AIR Total Pressure Inlet : 650000 Pa Total Temperature Inlet : 760 K Air Mass Flow Inlet : 0.1405 Kg/s Boundary Conditions FUEL Fuel : Kerosene Liquid [C12H23] Fuel Mass Flow Inlet : 0.005518 Kg/s Total Temperature Inlet : 380 K Droplets Diameters : 80  Cone Angle : 50° Droplets Velocity : 50 m/s Solver Setup Combustion Model : Standard Turbulence Model : TSDIA Radiation Model : OFF

  14. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of CO2 [Mass Fraction] Contours of H2O [Mass Fraction] Contours of OH [Mass Fraction] Contours of NO [Mass Fraction]

  15. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of Fuel Gas Mass Source [Kg/s] Contours of Static Temperature [°K] Contours of Turb. Kin. Energy [m2/s2] Contours of Velocity Magnitude [m/s]

  16. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer - Case N° 2 - Boundary Conditions AIR Total Pressure Inlet : 650000 Pa Total Temperature Inlet : 760 K Air Mass Flow Inlet : 0.1405 Kg/s Boundary Conditions FUEL Fuel : Kerosene Liquid [C12H23] Fuel Mass Flow Inlet : 0.005518 Kg/s Total Temperature Inlet : 380 K Droplets Diameters : 80  Cone Angle : 50° Droplets Velocity : 50 m/s Solver Setup Combustion Model : Standard Turbulence Model : TSDIA Radiation Model : ON Wall Temperature : 600 K Emissivity : 0.8

  17. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of CO2 [Mass Fraction] Contours of H2O [Mass Fraction] Contours of OH [Mass Fraction] Contours of NO [Mass Fraction]

  18. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of Fuel Gas Mass Source [Kg/s] Contours of Static Temperature [°K] Contours of Turb. Kin. Energy [m2/s2] Contours of Velocity Magnitude [m/s]

  19. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer - Case N° 3 - Boundary Conditions AIR Total Pressure Inlet : 650000 Pa Total Temperature Inlet : 760 K Air Mass Flow Inlet : 0.1405 Kg/s Boundary Conditions FUEL Fuel : Kerosene Liquid [C12H23] Fuel Mass Flow Inlet : 0.005518 Kg/s Total Temperature Inlet : 380 K Droplets Diameters : 80  Cone Angle : 50° Droplets Velocity : 50 m/s Solver Setup Combustion Model : Detailed Mechanism Turbulence Model : TSDIA Radiation Model : OFF

  20. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of CO2 [Mass Fraction] Contours of H2O [Mass Fraction] Contours of OH [Mass Fraction] Contours of NO [Mass Fraction]

  21. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of Fuel Gas Mass Source [Kg/s] Contours of Static Temperature [°K] Contours of Turb. Kin. Energy [m2/s2] Contours of Velocity Magnitude [m/s]

  22. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer - Case N° 4 - Boundary Conditions AIR Total Pressure Inlet : 650000 Pa Total Temperature Inlet : 760 K Air Mass Flow Inlet : 0.1405 Kg/s Boundary Conditions FUEL Fuel : Kerosene Liquid [C12H23] Fuel Mass Flow Inlet : 0.005518 Kg/s Total Temperature Inlet : 380 K Droplets Diameters : 80  Cone Angle : 50° Droplets Velocity : 50 m/s Solver Setup Combustion Model : Detailed Mechanism Turbulence Model : TSDIA Radiation Model : ON Wall Temperature : 600 K Emissivity : 0.8

  23. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of CO2 [Mass Fraction] Contours of H2O [Mass Fraction] Contours of OH [Mass Fraction] Contours of NO [Mass Fraction]

  24. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of Fuel Gas Mass Source [Kg/s] Contours of Static Temperature [°K] Contours of Turb. Kin. Energy [m2/s2] Contours of Velocity Magnitude [m/s]

  25. COMPUTATIONAL CASE : Particle Traces Coloured by Static Temperature [K] Case 1 : STD Mechanism - Radiation OFF Case 2 : STD Mechanism - Radiation ON Case 1 : DC Mechanism - Radiation OFF Case 2 : DC Mechanism - Radiation ON

  26. COMPUTATIONAL CASE : Static Temperature [K] Case 1 : STD Mechanism - Radiation OFF Case 2 : STD Mechanism - Radiation ON Case 1 : DC Mechanism - Radiation OFF Case 2 : DC Mechanism - Radiation ON

  27. Transient Performance Method : Function Functional Design Values TPM Modified Functional Design Values Iterations

  28. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer - Case N° 5 - Boundary Conditions AIR Total Pressure Inlet : 650000 Pa Total Temperature Inlet : 760 K Air Mass Flow Inlet : 0.1405 Kg/s Boundary Conditions FUEL Fuel : Kerosene Liquid [C12H23] Fuel Mass Flow Inlet : 0.005518 Kg/s Total Temperature Inlet : 298 K [Old value 380 K] Droplets Diameters : 80  Cone Angle : 40°[Old Value 50°] Droplets Velocity : 65 m/s [Old Value 50 m/s] Solver Setup Combustion Model : Detailed Mechanism Turbulence Model : TSDIA Radiation Model : ON Wall Temperature : 600 K Emissivity : 0.8

  29. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of Fuel Mass Source [Kg/s] Contours of Static Temperature [°K] Contours of Turb. Kin. Energy [m2/s2] Contours of Velocity Magnitude [m/s]

  30. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of HCO [Mass Fraction] Contours of HCOOH [Mass Fraction] Contours of HO2 [Mass Fraction] Contours of N2O [Mass Fraction]

  31. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of CO [Mass Fraction] Contours of CO2 [Mass Fraction] Contours of H2O [Mass Fraction] Contours of H2O2 [Mass Fraction]

  32. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of C2H [Mass Fraction] Contours of CH [Mass Fraction] Contours of CH2 [Mass Fraction] Contours of CH2S [Mass Fraction]

  33. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of NO [Mass Fraction] Particle Traces Coloured by Static Temperature [°K] Contours of OH [Mass Fraction]

  34. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of NO [Mass Fraction]

  35. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of OH [Mass Fraction]

  36. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of Static Temperature [°K]

  37. COMPUTATIONAL CASE : Nozzle-Duct C05D Premixer Contours of Velocity Magnitude [m/s]

  38. FROM COMPUTATIONAL CASES TO EMISSION DATA SETS \

More Related