1 / 36

First Principles Thermoelasticity of Minerals

First Principles Thermoelasticity of Minerals. Renata M. M. Wentzcovitch. Department of Chemical Engineering and Materials Science U. of Minnesota, Minneapolis. • First Principles Thermodynamics Method • Thermoelasticity of Mg (,Fe) SiO 3

angie
Download Presentation

First Principles Thermoelasticity of Minerals

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. First Principles Thermoelasticity of Minerals Renata M. M. Wentzcovitch Department of Chemical Engineering and Materials Science U. of Minnesota, Minneapolis • First Principles Thermodynamics Method • Thermoelasticity of Mg(,Fe)SiO3 Crystal structure(P,T) Elasticity: comparison with calculations and experiments Elasticity: comparison with PREM Logarithm ratios and lateral variations • Summary •

  2. …``First Principles’’… • Density Functional Theory ( , , ) •Local Density Approximation (Kohn and Sham,1965; Ceperley-Alder, 1985) •First Principles Pseudopotentials (Troullier-Martins, 1991) • Born-Oppenheimer Variable Cell Shape Molecular Dynamics (Wentzcovitch, 1991-3) • Density Functional Perturbation Theory for Phonons (Gianozzi et al., 1991)

  3. First Principles VCS-MD(Wentzcovitch, Martins, Price, PRL 1993) Damped dynamics MgSiO3 P = 150 GPa

  4. Lattice (a,b,c)th < (a,b,c)exp ~ 1% Tilt angles th - exp < 1deg Kth = 259 GPa K’th=3.9 Kexp = 261 GPa K’exp=4.0 (• Wentzcovitch, Martins, & Price, 1993) ( Ross and Hazen, 1989)

  5. Lower Mantle Mineral sequence II + + (Mg(1-x-z),Fex, Alz)(Si(1-y),Aly)O3 (Mgx,Fe(1-x))O CaSiO3

  6. Lower Mantle Mineral sequence II + (Mgx,Fe(1-x))SiO3 (Mgx,Fe(1-x))O

  7. TM of mantle phases CaSiO3 (Mg,Fe)SiO3 5000 Mw Core T 4000 HA solidus T (K) 3000 Mantle adiabat 2000 peridotite 0 20 40 60 80 100 120 P(GPa) (Zerr, Diegler, Boehler, Science1998)

  8. Thermodynamic Method • VDoS and F(T,V) within the QHA N-th (N=3,4,5…) order isothermal (eulerian or logarithm) finite strain EoS IMPORTANT: crystal structure and phonon frequencies depend on volume alone!!….

  9. (Thermo) Elastic constant tensor  kl equilibrium structure re-optimize

  10. Phonon dispersions in MgO (Karki, Wentzcovitch, de Gironcoli and Baroni, PRB 61, 8793, 2000) - Exp: Sangster et al. 1970

  11. Phonon dispersion of MgSiO3 perovskite Calc Exp - Calc Exp 0 GPa - Calc:Karki, Wentzcovitch, de Gironcoli, Baroni PRB 62, 14750, 2000 Exp:Raman [Durben and Wolf 1992] Infrared [Lu et al. 1994] 100 GPa

  12. Zero Point Motion Effect MgO F (Ry) - - Volume (Å3) Static300KExp (Fei 1999) V (Å3) 18.5 18.8 18.7 K (GPa) 169 159 160 K´ 4.18 4.30 4.15 K´´(GPa-1) -0.025 -0.030

  13. MgSiO3-perovskite and MgO 4.8 (256) Exp.: [Ross & Hazen, 1989;Mao et al., 1991; Wang et al., 1994; Funamori et al., 1996; Chopelas, 1996; Gillet et al., 2000; Fiquet et al., 2000]

  14. Elasticity of MgO (Karki et al., Science 1999)

  15. table 10.97 (Wentzcovitch et al, Phys. Rev. Lett (in press))

  16. Thermal expansivity and the QHA provides an a posteriori criterion for the validity of the QHA (10-5 K-1)    MgSiO3 Karki et al, GRL (2001)

  17. Criterion: inflection point of (T) The QHA invalid MgO MgSiO3 Brown & Shankland’s T

  18. …IMPORTANT: structural parameters and phonon frequencies depend on volume alone!! • Structures at high P are determined at T= 0 P(V,0) • P’(V,T’) within the QHA • At T 0… V(P’,T’)=V(P,0)  structure(P’,T’) = structure(P,0) Corresponding States

  19. Comparison with Experiments (Ross & Hazen, 1989) o Calc. 77 K < T < 400K 0 GPa < P < 12 GPa o o

  20. Comparison with Experiments (Ross & Hazen, 1989) o Calc. 77 K < T < 400K 0 GPa < P < 12 GPa o 1% o LDA +ZP Exp. LDA

  21. Test: comparison with experiments 0.05% 0.003 (Ross & Hazen)

  22. Predictions 4000 K 3000 K 2000 K 1000 K 300 K

  23. 300 K 1000K 2000K 3000 K 4000 K Cij(P,T) cij (Oganov et al,2001) (Wentzcovitch et al, Phys. Rev. Lett. in press)

  24. Velocities V (km/sec) &  (gr/cm3) (Wentzcovitch et al, in press)

  25. Aggregate Moduli 38 GPa 88 GPa

  26. Effect of Fe alloying (Kiefer,Stixrude, Wentzcovitch, GRL 2002) (Mg0.75Fe0.25)SiO3 || + + + 4

  27. Pyrolite (20 V% mw) Perovskite 0.10<xFe<0.15 100 GPa 38 GPa aaaa Brown & Shankland T (Mg(1-x),Fex)SiO3 (Jackson,1998) aaaa Wentzcovitch et al, PRL, in press)

  28. (Masters et al, 2000) 3D Maps of Vs and Vp Vs V Vp

  29. Lateral variations in VS and VP (Karato & Karki, JGR 2001) (MLDB-Masters et al., 2000) (KWH-Kennett et al., 1998) (SD-Su & Dziewonski, 1997) (RW-Robertson & Woodhouse,1996)

  30. Lateral variations in V and VP (MLDB-Masters et al., 2000) (SD-Su & Dziewonski, 1997) (Karato & Karki, JGR 2001)

  31. Relations 0.42 ≤ A ≤ 0.37 with

  32. Anderson Gruneisen parameters: s 

  33. Lateral heterogeneity ratio: R/sRs/p 1/A MLDB (MLDB-Masters et al., 2000)

  34. R/s and R/p R/sR/p FWD CF FDW FDW’ IT IT- Ishi & Tromp, 1999 CF-Cadek & Fleitout, 1999 FDW & FDW’, Forte at al., 1993 FWD, Forte at al., 1994

  35. Summary • We are building a consistent body of knowledge about lower mantle phases using adequate methods. • Inferences about LM based on current knowledge: - Homogeneous LM based on (Mg(1-x),Fex)SiO3 and (Mg(1-y),Fex)O alone cannot explain PREM’s elastic gradients - CaSiO3, (Mg(1-x-z) Alz,Fex,Alz)SiO3 - (Mg(1-y),Fey(20))O and y/x • Anelasticity is less important in the LM than Karato estimated. • Bonus: crystal structure of MgSiO3 at high P,T. Easiest way to test our predictions.

  36. Acknowledgements Bijaya B. Karki (LSU) Stefano de Gironcoli (SISSA) Stefano Baroni (SISSA) Matteo Cococcioni (MIT) Shun-ichiro Karato (U. of MN/Yale) Funding: NSF/EAR, NSF/COMPRES

More Related