1 / 78

Módulo de Auto Aprendizaje :

Módulo de Auto Aprendizaje :. POTENCIAS Y RAÍCES. Docente de Aula Sr. Bernardo Ortega. Inicio.

anila
Download Presentation

Módulo de Auto Aprendizaje :

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Módulo de Auto Aprendizaje: POTENCIAS Y RAÍCES Docente de Aula Sr. Bernardo Ortega

  2. Inicio El módulo de autoaprendizajeque tienes en tus manos, esta orientado para que adquieras un aprendizaje en potencias, raíces desde una perspectiva matemática, propiciándote una base para la comprensión de fenómenos matemáticos, destacando el trabajo individual, la constancia de trabajo, la construcción de un método de trabajo y una discusión que te permitirá obtener conclusiones validas en el ámbito de esta ciencia. Esta módulo ofrece una red de actividades que realizaras tu. El objetivo es que logres realizar un estudio comprensivo e interactivo, basado en tu propia experiencia, que te impulse a comprometerte con las metas u objetivos a lo largo de este trabajo y a fortalecer tu visión de futuro. El trabajo aquí entregado esta estructurado según los temas siguientes : Capitulo 1 Potencias. Capitulo 2 Raíces.

  3. Contenidos 1. Potencias 1.1 Potencias 1.2 Propiedades de las potencias 1.3 Ecuaciones exponenciales 2. Radicación 2.1 Raíces 2.2 Propiedades de las raíces 2.3 Racionalización 2.4 Ecuaciones irracionales

  4. Presentación Hola yo soy Ahome y al igual que tu, estoy empezando en esto de las raíces y potencias . Te pido un ratito de tu tiempo para que conozcas a mis amigos a quienes les pedí que me ayudaran en este modulo para que podamos aprender.

  5. Bueno estos son mis amigos que nos ayudaran durante este modulo. Yo soy Inuyasha, genio en potencias, yo les ayudare con los difíciles exponentes Yo soy Miroku, el mejor en Raíces yo con mi sabiduría y tus ganas de aprender lograre enseñarles el mundo de las raíces.

  6. Yo soy el ultimo de los amigos de Ahome, soy el mas sabio de los 3 y les voy a enseñar sobre los difíciles logaritmos en el próximo Módulo. Ahora que te presente a mis amigos podemos ir donde Inuyasha a ver que son las potencias

  7. Capitulo 1: Potencias El poder de la Multiplicación

  8. Para comenzar: Una pequeña historia El inventor del ajedrez, le presento su novedosa creación al rey de Dirham, en la india, este quedo tan fascinado por el juego que le ofreció cualquier cosa que el deseara como recompensa. Ante este ofrecimiento el ingenioso inventor le propuso al rey que le diera simplemente, un grano de trigo por el primer casillero del tablero, dos por el segundo, cuatro por el tercero, ocho por el cuarto y así sucesivamente duplicando la cantidad del casillero anterior hasta llegar al ultimo. El rey se extraño por la modesta petición del súbdito y mando a que se cumpliera su petición. Horas mas tarde llego el encargado de los graneros afligido diciendo que no se podía cumplir con la petición del inventor... - ¿Adivinas que paso?El encargado le explico a el rey, y le dijo que no había suficiente trigo en los graneros del reino, ni siquiera en los de todo el mundo! El rey quedo atónito y no lo pudo creer, ¿Y como es posible esto?

  9. Bueno Ahome, esto es muy sencillo, En el primer casillero el número de granos es igual a uno, en el segundo cuadro es dos, en el tercero cuatro, en el cuarto ocho, y así hasta el 64, este es un procedimiento muy lento si. ¿Y que haríamos para simplificar este procedimiento? • Para sacar el valor tendríamos que hacer lo siguiente: el primer cuadrado 1x1 en el siguiente 2x1 luego 2x2 , de hay 2x2x2 y así sucesivamente. • Con potencias el primer numero quedaría como 20 , el segundo como 21, el tercero como 22 y el cuarto como 23 Por que en potencias la base que en este caso es 2 se multiplica tantas veces como el numero de exponente tenga.

  10. ¿Ósea que tendríamos que sumar 20+21+22+23..........hasta 263? Si ahome como veras es un numero muy grande, solo como ejemplo el 263 es igual a 2x2x2x2….x2 63 veces y ese numero me dio 9.223.372.036.854.775.808, lo que no es el total ya que nos falta sumar todos los números anteriores y como veras no es un numero para nada pequeño.

  11. Definición de potencia Bueno, ¿entendieron lo que es realmente una potencia? Yo si, pero parece que mi amigo no mucho Bueno, lo explicare mas detenidamente. Tomen atención. Una potencia es un numero que llamaremos “a” que arriba de este se encuentra otro numero que llamaremos “n”de esta forma: Al “n” se le llama exponente de la potenciaAl “a” se le llama base de la potencia “a” es el número en cuestión,”n” es la cantidad de veces que se multiplica por si mismo. Se define de esta forma: an=a•a•a•a• •a (n veces) Las potencias sirven para expresar la multiplicación de un dato que se repite una cierta cantidad de veces

  12. Ahora veamos si entendisteCalculemos el valor de (-2)^3 Aplicando la definición tenemos: (-2)3 = (-2) • (-2) • (-2) = -8 Calculemos el valor de -34 Observamos que la base de la potencia es 3 ( y no -3) expresándola en forma de producto nos queda: -34 = -3 • 3 • 3 • 3 = -81

  13. Ahora resuelve tú Como conclusión se puede decir que cuando un término que es antecedido por un signo negativo se eleva a un exponente impar el término siempre será el mismo que al inicio, en cambio elevado a un número par se logrará el signo contrario al inicial.

  14. Potencias con exponente 1 Es igual a la base de la potencia, es decir: a1=a ejemplos: 101=10; 31=3 Ejercita: • 71= • 221= • 41= • 61= Soluciones: 1)7 2)22 3)4 4)6 En todo caso, sea cual sea, la base será igual a si misma si el exponente es 1.

  15. Potencias con exponente -1 Es igual al inverso multiplicativo de la base, es decir: a-1=1/a ejemplos: 5-1=1/a ; (1/2)-1=2 Ejercita: • Soluciones: • 2 • 10/23 • 1/8 • 3/10

  16. Multiplicación de potencias de igual base Para multiplicar potencias de igual base mantenemos la base y sumamos los exponentes, es decir: an • am = an+m Al revés cuando tenemos una base con una suma en el exponente la podemos descomponer, es decir: an+m= an • am

  17. Ejercicio resuelto Expresemos en forma de potencias: Aquí tenemos el producto del término (-1/2) cinco veces (el término se repite 5 veces).En este caso lo que se hace es sumar los exponentes de todos los términos, dejando solo un término.

  18. Resuelve estos ejercicios para ver como vas ; manejando esta propiedad

  19. Soluciones: Acá tenemos las soluciones de los ejercicios anteriores, espero que te haya ido bien. i)a8 ii)b11 iii) 55 iv)a3x+2y Si acertaste a tres ejercicios, significa que ya tienes las nociones de esta propiedad clara, si crees que resulto difícil o tienes dudas, resuelve los ejercicios de reforzamiento.

  20. División de potencias de igual base En este caso, mantenemos la base y restamos los exponentes, es decir: an: am = an-m Al revés cuando tenemos una base con una resta en el exponente la podemos descomponer, es decir: an-m = an: am

  21. Ejercicio resuelto En el primer caso, se aplica la propiedad que si se tiene una misma base, se pueden restar los exponentes. Lo que se demuestra paso a paso.

  22. Resuelve estos ejercicios para ver como vas manejando esta propiedad

  23. Soluciones: Acá tenemos las soluciones de los ejercicios anteriores, espero que te hayas tenido éxito en la resolución de la ejercitación propuesta. i) m10 ii) x2 iii) 2/5 iv) m2 Si acertaste a 3 ejercicios significa que; ya tienes las nociones de esta propiedad clara, si crees que fue difícil o tienes dudas, resuelve los ejercicios de reforzamiento.

  24. Potencia con exponente 0 • Ejercita: • 30=___ 3)-20=___ • (1/2)0=___ 4) 10=___ • Soluciones: • 1)1 3)-1 • 2)1 4)1 Es igual a 1: a0=1, 00= no existe Ejemplos: 50=1 -40=-1

  25. Potencia con exponente negativo Es la misma propiedad que con exponente “a” elevado a menos uno. Ahora, cuando se invierte la expresión - al ser negativo el exponente - queda el exponente “n”. Veamos el ejemplo. a-n=1/an ; a≠0 Ejemplo: 3-2=(1/3)2=1/32=1/9 Ejercitemos: i)-2-2=___ iii)(1/3)-2=___ ii)(-2)-2=___ iv) (22/23)-4=___ Soluciones: i)-1/4 iii)9 ii)1/4 iv)16

  26. Potencia de una potencia Aquí debemos elevar la base a la multiplicación de los exponentes. (am)n = an• m En el caso contrario si tenemos una base con exponentes multiplicándose se pueden distribuir. an• m = (am)n

  27. Ejercicio resuelto • Desarrollemos (a2: a6)2 = Primero tenemos que aplicar la propiedad, multiplicando los exponentes, luego aplicando las propiedades; ya conocidas de potencias, deberíamos llegar a un solo término.

  28. Resuelve estos ejercicios para ver como vas manejando esta Propiedad

  29. Soluciones: Acá tenemos las soluciones de los ejercicios anteriores, espero que te haya ido bien. i) b8 ii) 72a2b19c9 iii) 3x3y2z iv) a3/16 Si acertaste a 3 ejercicios significa que ya tienes las nociones de esta propiedad clara, si crees que fue difícil o tienes dudas, resuelve los ejercicios de reforzamiento.

  30. Potencia de un producto Elevamos el producto de las bases al exponente común. an • bn = (ab)n Por el contrario si tenemos 2 un paréntesis elevado a un número, los componentes del paréntesis se pueden separar. (ab)n = an • bn

  31. Ejercicio resuelto Primero se aplica la propiedad de mantener el exponente y multiplicar las bases, luego solo resolvemos la potencia resultante.

  32. Resuelve estos ejercicios para ver como vas manejando esta propiedad

  33. Soluciones: Acá tenemos las soluciones de los ejercicios anteriores, espero que hayas tenido éxito en la resolución. i) (2ax)3 ii) [2q(a+b)]2 iii) (ab)4p-1 iv) 63 Si acertaste a 3 por lo menos significa que ya tienes las nociones de esta propiedad clara, si crees que fue difícil , resuelve los ejercicios de reforzamiento.

  34. Potencias de 10 • Se muestra cuando tenemos 10 elevado a un número cualquiera: 100 =1 104 = 10000 101 =10 105 = 100000 102 =100 106 = 1000000 103 =1000 107 = 10000000

  35. Notación científica • Se utiliza para expresar grandes cantidades en números más pequeños. • Para poder expresar un numero como notación científica se debe elegir un numero entre 1 y 10 y luego hacer el producto entre este y una potencia de 10. • Ejemplos: • La velocidad de la luz: 300.000 Km/s = 3•105 Km./s • El tamaño de una célula: 0,000008 metros = 8•10-6 metros

  36. Ejercitemos juntos, para aprender esta propiedad Primero se tiene que dejar lo mas reducido el número que multiplica al 10, no puede ser decimal, ni menos pasarse de 10 unidades, se cuentan las cifra 0, por cada cero será un digito más. Si es decimal, o sea un número minúsculo, el exponente es negativo y si el número es muy grande, es positivo el exponente.

  37. Resuelve estos ejercicios para ver como vas manejando esta propiedad • 0,0000000065 3)0,00000000000121 • 123.000.000 4) 567.000.000.000 Soluciones: 1) 6,5 • 10-9 3) 1,21 •10-12 2) 1,23 • 108 4)5,67 • 1011

  38. Potencia con exponente fraccionario • Esta potencia consta del exponente fraccionario, que se trabaja de la siguiente forma, se eleva la base a el numerador de la fracción y luego se construye la raíz de esta, y cuyo índice corresponde a el denominador de la fracción. • Y por otro lado se puede trabajar inversamente, es decir al ver una raíz la podemos transformar en potencia, colocando el índice como denominador y el exponente que tenga el radicando como numerador en la potencia que se formaría

  39. Resuelve estos ejercicios para ver como vas manejando esta propiedad Soluciones: 1)5 2)17 3)-1 4)10

  40. Ecuaciones exponenciales • Aquí se trabaja con los exponentes como los elementos de la ecuación • Lo mas difícil de estas ecuaciones es igualar las bases • Una ves igualada las bases se aplica la siguiente propiedad y terminamos igualando los exponentes:

  41. En el ejemplo (b), se igualaron las bases para poder resolver la ecuación. Una vez realizado este procedimiento, se trabaja de forma normal; como una ecuación de primer grado. • Ejemplos: a) 32x-5=3x-3 2x-5=x-3 x=2 b)4x+3=82x+9 b) (22)x+3=(23)2x+9 2x+6=6x+27 -4x=21 x= -4/21

  42. Resuelve estos ejercicios para ver los avances en tu aprendizaje. Soluciones: i) x=7/2 iii) x=-1 ii) x=4 iv) x=0/1= no solución en los reales

  43. Ejercicios de Reforzamientos :

  44. Problema de profundización: Alfredo recibe una carta pidiéndole que participe en una “cadena”, enviándole copia de la misma carta a 3 otras personas, cada una de las cuales debe enviarle un cheque por $1000 a vuelta del correo. Él, a su vez, debe enviar $1000 al remitente de la carta que recibió. Si cada persona que recibe una carta de esta “cadena” procede como indicado, todos harán beneficios. ¿dónde esta la trampa? Descúbrelo a través de tus conocimientos adquiridos.

  45. Capitulo 2: Radicación (raíces)

  46. Raíces En este nuevo capitulo encontramos lo contrario de la potencias, las raíces, es decir las potencias se simplifican (eliminan) con las raíces y viceversa Índice de la raíz Radical y operador Cantidad subradical o radicando Las raíces tienen sus comienzos en las potencias y por ello se puede hacer el proceso inverso que en el caso de las potencias, por lo tanto: ¿Pero con que términos trabajaremos ahora en este capitulo de raíces, si en potencias a=base, y n=exponente, ahora como es esto? Bueno tenemos 3 terminos con los que trabajaremos los cuales son:

  47. Propiedades de las raíces Bueno apliquemos lo anterior aprendiendo las propiedades de las raíces, veamos la primera: Raíz de una potencia con exponente igual al índice. • Si se tiene un índice igual a el exponente que tiene el radicando, que esta dentro de la raíz, se puede dejar el radicando como potencia, una base elevado a una fracción de la siguiente forma: Al elevar a ”n “ la raíz n-esima de a estamos, simplificando el proceso anterior..

  48. Veamos unos ejemplos: Aplicando la propiedad, vemos que el índice y el exponente del radicando se deja en forma de potencia, por lo tanto igual numerador y denominador dan como resultado 1, así se dice que se simplifico o elimino la raíz y se convierte en una simple base elevado a 1 lo que da como resultado la misma base, como vemos en los ejemplos. Es más simple ver los ejemplos.

  49. Ahora te toca trabajar a ti:

  50. Ahora si se tiene una raíz de 2 o más términos que se estén multiplicando, se pueden separar en otras dos raíces (las cuales tienen el mismo índice que la primera raíz) que se multipliquen, como se muestra a continuación. Raíz de un producto: Así también podemos hacer el proceso inverso, donde el producto de dos raíces de igual índice que puede agrupar en una sola raíz

More Related