360 likes | 533 Views
Física da Computação e da Informação. Ivan S. Oliveira & Roberto S. Sarthour Grupo de Computação Quântica por RMN. Bibliografia. Quantum Computation and Quantum Information , M.A. Nielsen e I.L. Chuang (Cambridge Press 2002)
E N D
Física da Computação e da Informação Ivan S. Oliveira & Roberto S. Sarthour Grupo de Computação Quântica por RMN
Bibliografia • Quantum Computation and Quantum Information, M.A. Nielsen e I.L. Chuang (Cambridge Press 2002) • The Physics of Quantum Information, D. Bouwmeester, A. Ekert e A. Zeilinger (Springer 2001) • Explorations in Quantum Computing, C.P. Williams e S.H. Clearwater (Springer & Telos 1998) • Feynman Lectures on Computation
Breve Histórico 1854 – George Boole - “An investigation into the laws of thought, on which are founded the mathematical theories of logic and probabilities”. 1938 – Claude Shannon – “A symbolic analysis of relay and switching circuits”. 1936 – Alan Turing – “On computable numbers, with an application to the entscheidungsproblem”. 1948 – Claude Shannon – “A mathematical theory of communication”
Computação “Matemática” 1928 – David Hilbert – “Existe algum procedimento puramente “mecânico” capaz de resolver qualquer problema matemático?” 1936 – Turing – “Sim, existe. Uma Máquina de Turing!” Um computador moderno é uma realização física de uma máquina de Turing. Não há nenhum problema conhecido que seja solucionável em um computador real, e que não possa ser resolvido em uma máquina de Turing! • Máquinas de Turing • Uma fita infinita, dividida em células; • Uma cabeça de leitura e gravação; • Um conjunto de símbolos que formam • um alfabeto; • Um conjunto de instruções que • especificam as ações e os • estados da máquina.
Quanto é 3 + 5? Alfabeto: {*, <espaço>} Representação: 3 = ***, 5 = ***** Entrada: *** ***** Resultado = ******** = 8
Chaves (ou portas) Lógicas RESULTADO IMPORTANTE: QUALQUER AÇÃO COMPUTACIONAL PODE SER CONSTRUÍDA A PARTIR DE UM CONJUNTO UNIVERSAL DE CHAVES LÓGICAS! AND, OR e NOT formam um conjunto universal de chaves lógicas. NAND (sozinha) forma outro conjunto. CONTROLE SAÍDA ALVO
Chaves lógicas - 2 MEIO-SOMADOR SOMADOR INTEIRO
Termodinâmica, Estatística e Conhecimento “Durante muito tempo a computação foi considerada uma área da matemática pura. Porém, computadores são objetos físicos e consequentemente estão sujeitos às leis da Física. São as leis da Física que dizem o que computadores podem ou não fazer, e não regras matemáticas.” David Deutsch
Estatística de 4 Moedas 4/16 = 1/4 4/16 = 1/4 6/16 = 3/8 1/16 1/16
Informação e Entropia Entropia é a grandeza física ligada à informação. Definição de Shannon: Para o caso das moedas: Este número é a quantificação da ignorância!
Exemplo... Entropia associada a um jogo de cara-ou-coroa com uma moeda não-viciada: Se a moeda for tendenciosa:
Entropias e mais Entropias Sejam X e Y variáveis aleatórias com distribuição de probabilidades p(x,y). Define-se a entropia conjunta de X e Y como: A entropia conjunta mede a incerteza sobre o par (X,Y). Se S(Y) é a entropia relacio- nada somente à Y, define-se a entropia condicional S(X|Y) como: Medida da informação sobre X, condicio- nada à informação sobre Y. E a informação mútua S(X:Y): Medida da informação comum a X e Y.
Propriedades e mais Propriedades A informação comum a X e Y não pode ser maior do que a informação sobre Y (ou X). A incerteza sobre X não pode superar a incerteza sobre X e Y. A desinformação sobre o par não pode superar a soma das desinformações individuais. Consequentemente:
Termodinâmica e Entropia Entropia é a grandeza física ligada à desordem. Entropia alta Entropia baixa
Reversibilidade e Entropia Entropia é a grandeza física ligada à reversibilidade e fluxo de calor. TA DQ TB
Informação e Entropia 2 O aumento de entropia corresponde à perda de informação. Entropia alta Entropia baixa “2 + 2” tem mais informação do que “4”!! Entropia alta Entropia baixa
Estatística, Entropia e Termodinâmica pk = probabilidade de que um nível “k” esteja ocupado. En En-1 Maximização Termodinâmica E2 E1 BOA TARDE, ATÉ AMANHÃ! E0
Resumo • Computadores são realizações físicas de máquinas de Turing. Não existe • problema que possa ser resolvido em um computador, que não possa • também o ser em uma máquina de Turing; 2. Portas lógicas são operações sobre bits. Qualquer operação lógica pode ser decomposta na ação de um conjunto de portas lógicas universais; 3. A representação física de bits e circuitos lógicos torna os computadores sujeitos às leis da Física. 4. A entropia é a quantidade física ligada à informação e também à ordem dos sistemas termodinâmicos. Entropia alta significa desordem e falta de informação. 5.A Física Estatística dá uma fundamentação microscópica para a termodinâmica. A partir do princípio da maximização da entropia (para sistemas em equilíbrio) deriva-se as funções termodinâmicas a partir de considerações microscópicas sobre o sistema.
Computação, Reversibilidade e Entropia Perda de bits = perda de informação => aumento de entropia => irreversibilidade. • No. de bits se conserva • informação se conserva • reversibilidade. A computação clássica é IRREVERSÍVEL!
1973...um ano importante para a computação Naquele ano, um físico da IBM (Charles Bennett) demonstrou ser possível implementar a computação clássica com operações inteiramente reversíveis. A conseqüência mais importante deste resultado foi o surgimento da Computação Quântica! A porta NAND é uma porta clássica universal • a b c a’ b’ c’ • 0 0 0 0 0 0 • 0 0 1 0 0 1 • 0 1 0 0 1 0 • 0 0 1 0 0 • 0 1 1 0 1 1 • 0 1 1 0 1 • 1 1 0 1 1 1 • 1 1 1 1 1 0 Porta de Toffoli TRANSFORMAÇÕES UNITÁRIAS EM MQ SÃO OPERAÇÕES REVERSÍVEIS. AQUI APARECE A NOÇÃO DE COMPUTAÇÃO QUÂNTICA! a a’ b’ b É possível fazer computação clássica reversível! c’ c
1871 - O Demônio de Maxwell viola Segunda Lei da Termodinâmica?! Entropia diminui sem realização de trabalho!? TA = TB TA < TB ENTROPIA MÁXIMA ENTROPIA MENOR
1961 – O Princípio de Landauer Até aquele ano, acreditava-se que qualquer ação computacional exigia gasto de energia. Rolph Landauer, também da IBM, mostrou que não! O que gasta energia é o ato de apagar informação! Energia mínima para apagar 1 bit. Aumento mínimo na entropia ao se apagar 1 bit. Charles Bennett usou o Princípio de Landauer para, em 1987, resolver o problema do demônio de Maxwell, pondo fim a mais de 100 anos de discussão! O demônio precisa apagar informação na sua memória sobre a energia das Moléculas, e isso aumenta a entropia!
Fenômenos Naturais como processos Computacionais processamento saída entrada
Mecânica Quântica para pedestres... Mecânica Quântica: Mecânica clássica:
Limites físicos da computação - 1 1. Qual o tempo mínimo para inverter 1 bit de informação? m Aqui vamos nós... B Equação clássica de movimento Autoenergias:
Limites físicos da computação – 2 A cozinha quântica Evolução Tempo mínimo para inverter 1 bit: O tempo mínimo para inverter 1 bit é aquele dado pelo Princípio de Incerteza
Limites físicos da computação – 3 Energia: grandeza física associada à velocidade de processamento. Entropia: grandeza física associada à capacidade de memória. Laptop “supremo”: 1 kg de massa confinada em um volume de 1 litro. 1) Limite de velocidade: 2) Limite de memória: O laptop supremo opera com Uma velocidade de 1050 operações lógicas por segundo, em 1031 bits.
A Lei de Moore - 1 Ano da publicação!
Lei de Moore - 3 QUÂNTICO! CLÁSSICO
H 1973 – Charles Bennett: computação (clássica) reversível; 1982 – Paul Benioff: computador quântico; 1984 – Protocolo BB84; 1985 - David Deutsch: uso do paralelismo quântico para resolver problemas matemáticos rapidamente; 1994 - Peter Shor: fatoração de números grandes em tempo polinomial; 1996 – Primeiro teste experimental do BB84 sobre 23 km; 1997 - Lov Grover: algoritmo de busca em tempo quadrático; 1997 - Neil Gershenfeld & Isaac Chuang: uso da RMN em CQ; - Teleporte com fótons; 1998 - Jones & Mosca: primeira demonstração experimental do algoritmo de Deutsch com RMN; - Chuang, Gershenfeld e Kubinec: demonstração experimental do algoritmo de Grover por RMN; - Nielsen, Knill e Laflamme: demonstração do teleporte quântico usando RMN; 2001 - Vandesypen, Chuang e outros: demonstração do algoritmo de Shor por RMN; 2002 - Novas propostas para elevar o número de q-bits acima de N = 100! 2004 – Teleporte com átomos. I S T Ó R I A
Computação Quântica: novos recursos computacionais • Princípio Fundamental: estados quânticos podem existir em superposições de • autoestados.