1 / 32

Network Theory and Dynamic Systems Game Theory: Mixed Strategies

Network Theory and Dynamic Systems Game Theory: Mixed Strategies. Prof. Dr. Steffen Staab. Randomization. Rationale to randomize Matching pennies do not result in a Nash equilibrium , because opponent would switch if he knew your choice

Download Presentation

Network Theory and Dynamic Systems Game Theory: Mixed Strategies

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Network Theory and Dynamic SystemsGame Theory: Mixed Strategies Prof. Dr. Steffen Staab

  2. Randomization • Rationale torandomize • Matchingpennies do not result in a Nash equilibrium,becauseopponentwouldswitchif he knewyourchoice → Randomize your choice such that your opponent cannot determine the best response → Mixed strategy

  3. Nash Equilibrium Definition: A Nash equilibriumfor a mixed-strategygameis a pair ofstrategies (S,T), where S and T arebothprobabilitydistributionsover individual strategiesavailabletoplayer 1 and 2, respectively, such thateachis a bestresponsetotheother. Can a pure strategyleadto a Nash equilibriumforthepenniesgame?

  4. Mixed Strategy • Eachplayerchooses a probabilityforeachstrategy • Player 1 chooses Head with p andTailwith 1-p • Player 2 chooses Head with q andTailwith 1-q • Rewardforplayer 1: • pq*1 + (1-p)(1-q) * 1 + p(1-q) * (-1) + (1-p)q * (-1) = pq + 1 + pq - p - q - p + pq - q + pq = 1 – 2 (p+q) + 4pq

  5. Mixed Strategy • Rewardforplayer 1: • pq*1 + (1-p)(1-q) * 1 + p(1-q) * (-1) + (1-p)q * (-1) = pq + 1 + pq - p - q - p + pq - q + pq = 1 – 2 (p+q) + 4pq • Rewardforplayer2: Multiplywith -1: -1 + 2 (p+q) - 4pq • Chooseoptimum: differentiateforboth variables • d(1 – 2 (p+q) + 4pq)/dp = -2 + 4q = 0 • d(1 – 2 (p+q) + 4pq)/dq= -2 + 4p = 0 (also forplayer 2) Nobetterresultachievablefor p=q=0.5 Nash Equilibrium for p=q=0.5 !

  6. Note • Whilethereneed not be a Nash equilibriumforthe pure strategies, thereisalwaysat least one Nash equilibriumformixedstrategies.

  7. Howtosolvethis a bitmoreeasily? Considermatchingpenniesagain: • If Player 2 chooses a probabilityof q, and Player 1 chooses Head theexpectedpayoffto Player 1 is: • (-1) (q) + 1 (1-q) = 1-2q • If Player 1 choosesTail: • 1 (q) + (-1) (1-q) = 2q-1 • Note 1: no pure strategycanbepartof a Nash equilibrium • Note 2a: If 1-2q > 2q-1 then Head isthebeststrategyfor P1 • Note 2b: If 1-2q <2q-1 thenTailisthebeststrategyforP1 • Note 2c: Pure strategies do not leadto Nash equilibrium, thus Player 2 must choose a pointwhere1-2q = 2q-1 • Note 2d: Likewisefor Player 1

  8. DerivedPrinciple • A mixedequilibriumariseswhentheprobabilitiesusedbyeachplayermakehisopponent indifferent betweenhistwooptions.

  9. Applyingthe „indifferenceprinciple“ toanotherexample • „American Football“ • Assumedefensechooses a probabilityof q fordefendingagainstthe pass: • Thenpayoffforoffensefrompassingis • 0 q + 10 (1-q) = 10-10q • Payofffromrunningis • 5q + 0 (1-q) = 5q • 10-10q=5q issolvedfor q=2/3 • Likewise p=1/3

  10. Multiple Nash equilibria • Howmany Nash equilibria in thiscase? Unbalancedcoordinationgame

  11. Multiple Nash equilibria • Mixed-strategyequilibrium • 1 q + 0 (1-q) = 0q + 2 (1-q) → q=2/3 Also, becauseofsymmetry → p=2/3 Unbalancedcoordinationgame

  12. Zero Sum Games andLinear Optimization

  13. Linear Programming • Linear optimizationtask • Maximize or minimize a linear objective function in multiple variables • Linear constraints • Givenwith linear (in-)equalities

  14. Zero sumgame Players x and y chooseelectiontopicstogathervotes. Depending on thechosentopicstheygainorloosevotes. Whatisthebestmixedstrategy? y x

  15. Zero Sum Game Player x knowsthatplayer y triestominimizehislossbyminimizingthefollowingtwovalues: While x triestomaximizethisvalue Dual argumentforplayer y:

  16. Write zerosumgameas linear programs Spieler x Spieler y -2y1+y2 -2

  17. Dual Linear Programs Every linear programming problem, referred to as a primal problem, can be converted into a dual problem: • Given primal problem:Maximize cTx subject to Ax ≤ b, x ≥ 0; • Has same value of the objective function as the corresponding dual problem: Minimize bTy subject to ATy ≥ c, y ≥ 0.

  18. Write zerosumgameas linear programs Spieler x Spieler y -2y1+y2 -2 Observation: The twoproblemsare dual toeachother, thustheyhavethe same objectivefunctionvalue: Equilibrium

  19. MinimaxTheorem • Minimax-Theorem: • There are mixed strategies that are optimal for both players.

  20. Zero Sum Game Whatarethebeststrategiesnow? • Player x choosesstrategieswith • Player y choosesstrategieswith • Bothachieve an objectivefunctionvalueof

  21. Pareto Optimality & SocialOptimality

  22. Optimality – 1 • Nash Equilibrium • Individual optimum (-4,-4) • Not a global optimum Prisoners‘ Dilemma

  23. SocialOptimality Definition: A choiceofstrategies – onebyeachplayer – is a socialwelfaremaximizer(orsocially optimal) ifitmaximizesthesumoftheplayers‘ payoffs. However: Addingpayoffsdoes not alwaysmake sense! Prisoners‘ Dilemma

  24. Pareto Optimality Definition: A choiceofstrategies – onebyeachplayer – isPareto-optimal ifthereisnootherchoiceofstrategies in which all playersreceivepayoffsat least as high, andat least oneplayerreceives a strictlyhigherpayoff. • Core here: bindingagreement • (not-confess,not-confess) is Pareto-optimal, but not a Nash equilibrium • Nash equilibriumisonly Non-Pareto optimal choice!

  25. Multiplayer Games

  26. Multiplayer Games Structure: • n players • eachplayerhassetofpossiblestrategies • eachplayerhas a payofffunction Pi such thatforreachoutcomeconsistingofstrategieschosenbytheplayers(S1, S2,…Sn), thereis a payoff Pi(S1, S2,…Sn) toplayer i. Best response: A strategy Siis a bestresponseby Player i to a choiceofstrategies(S1, S2,…Si-1, Si+1,…,Sn), if Pi(S1, …Si-1, Si, Si+1,…,Sn) ≥ Pi(S1, …Si-1, S'i, Si+1,…,Sn) for all otherpossiblestrategiesS'iavailabletoplayer i.

  27. Multiplayer Games Structure: • n players • eachplayerhassetofpossiblestrategies • eachplayerhas a payofffunction Pi such thatforreachoutcomeconsistingofstrategieschosenbytheplayers(S1, S2,…Sn), thereis a payoff Pi(S1, S2,…Sn) toplayer i. Nash equilibrium: A choiceofstrategies(S1, S2,…Sn) is a Nash equilibriumifeachstrategyitcontainsis a bestresponseto all others.

  28. DominatedStrategies

  29. DominatedStrategies Definition: A strategyisstrictlydominatedifthereissomeotherstrategyavailabletothe same playerthatproduces a strictlyhigherpayoff in responsetoeverychoiceofstrategiesbytheotherplayers. (notionisonlyusefuliftherearemorethantwostrategies)

  30. Facility Location Game (cf Hotelling‘slaw) • Firm 1: Strategy A isdominatedby C • Firm 2: Strategy F isdominatedby D • Reasonaboutthestructureanddeletethesestrategies

  31. Facility Location Game (cf Hotelling‘slaw) • Firm 1: Strategy Eisdominatedby C • Firm 2: StrategyB isdominatedbyD • Reasonaboutthestructureanddeletethesestrategies

  32. Facility Location Game (cf Hotelling‘slaw) • One pair ofstrategiesremaining • The unique Nash equilibrium • Generalizesfrom 6 to an arbitrarynumberofnodes

More Related