230 likes | 413 Views
Mechanical Response at Very Small Scale Lecture 3: The Microscopic Basis of Elasticity Anne Tanguy University of Lyon (France). III. Microscopic basis of Elasticity. The Cauchy-Born theory of solids (1915). General expression of microscopic and continuous energy .
E N D
Mechanical Response at Very Small Scale Lecture 3: The Microscopic Basis of Elasticity Anne Tanguy University of Lyon (France)
III. Microscopic basis of Elasticity. • The Cauchy-Born theory of solids (1915). • General expression of microscopic and continuousenergy. • The microscopic expression for Stresses. • The microscopic expression for ElasticModuli. • B. The coarse-grainedtheory for microscopicelasticity (2005). • Coarse-graineddisplacement and fluctuations • The microscopic expression for Stresses. • The computation of Local ElasticModuli. S. Alexander, Physics Reports 296,65 (1998) C. Goldenberg and I. Goldhirsch (2005)
Microscopic expression for the local ElasticModuli: Simple example of a cubiccrystal. On each bond: strain stress elastic modulus
A. The Cauchy-Born Theory of Solids (1915). Regular expression of the Many-particles Energy: j i j k N particles D dimensions N.D parameters -D(D+1)/2 rigid translations and rotations N.D –D(D+1)/2 independent distances 2-body interactions (Cauchy model) Ex. Lennard-Jones Foams BKS model for Silica 3-body inter. Ex. Silicon
Expression of local forces: Internal force exerted on atom i: Force of atom j on atom i: with with Tension of the bond (i,j) in the configuration {r}. The equilibrium on each atom i writes: thus
Particlesdisplacement, and strain: uijP uij uijT rij uj rijeq ui j i
First orderexpansion of the energy, and local stresses: To compare with:
First orderexpansion of the energy, and local stresses: To compare with: « Site stress »: Local stress:
Second orderexpansion of the energy, local ElasticModuli: with rotation bound elongation Local stiffness
Born-Huang approximation for local ElasticModuli: Tij=0 To compare with:
Born-Huang approximation for local ElasticModuli: 2-body contribution (central forces): (i1i2)=(i3i4) n=1/2 i 3-body contribution (angular bending): i=i1 and i=i3 or i=i4 n=2/3 i i 4-body interactions (twists): (i1i2) ≠ (i3i4) n=2/4
Number of independentElasticModuli, from the microscopic expression: Cabgd=Cbagd and Cabgd=Cabdg 36 moduli Cabgd=Cgdab 21 moduli Additional symetries , for 2-body interactions (Cauchy model): Permutations of all indices: Caabb=Cabab and Cabgg=Cagbg (Cauchy relations for 2-body interactions) 3 Caaaa + 6 Caaab + 3 Caabb + 3 Cabgg 15 moduli. Warning:CabgdMACRO ≠ < CabgdMICRO (i) > (cf. lecture 4)
B. The coarse-grainedtheory for microscopicelasticity For ex. with and
1) Coarse-grained displacement: Velocity dependent
Separate coarse-grained (continuous) response, and « fluctuations »: continuous Coarse-grained displacement and fluctuations: F gaussian funct. of width w C. Goldenberg et I. Goldhirsch (2004)
cf. Note that, at this level, there is no explicit linear relation between and !!
Use of the coarse-grained (continuous) disp. field for the computation of local elastic moduli: strain F Gaussian with a width w ~ 2 stress 2D case: using 3 independent deformations for a 2D system
Maps of localelastic moduli: C1 ~ 2 m1 C2 ~ 2 m2 C3 ~ 2 (l+m) 2D Jennard-Jones w=5a N = 216 225 L = 483 a
Large scale convergence to homogeneous and isotropic elasticity: Elastic Moduli: 2l+2m ~ 1/w 2m Locally inhomogeneous and anisotropic. Progressive convergence to the macroscopic moduli l and m, homogeneous and isotropic. Faster convergence of compressibility. No size dependence, but no characteristic size !
? 1% Which characteristic size ? Departure from local Hooke’s law, for r < 5 a. At small scale w: ambigous definition of elastic moduli (9 uncoherent equations for 6 unknowns) Error function: Local rotations? Long-range interactions ? Role of the « fluctuations » ?
Bibliography: I. DisorderedMaterials K. Binder and W. Kob « GlassyMaterials and disorderedsolids » (WS, 2005) S. R. Elliott « Physics of amorphousmaterials » (Wiley, 1989) II. Classical continuum theory of elasticity J. Salençon « Handbook of Continuum Mechanics » (Springer, 2001) L. Landau and E. Lifchitz « Théorie de l’élasticité ». III. Microscopic basis of Elasticity S. Alexander Physics Reports 296,65 (1998) C. Goldenberg and I. Goldhirsch « Handbook of Theoretical and Computational Nanotechnology » Reithed. (American scientific, 2005) IV. Elasticity of DisorderedMaterials B.A. DiDonna and T. Lubensky « Non-affine correlations in Randomelastic Media » (2005) C. Maloney « Correlations in the ElasticResponse of Dense Random Packings » (2006) Salvatore Torquato « RandomHeterogeneousMaterials » Springer ed. (2002) V. Sound propagation Ping Sheng « Introduction to wavescattering, Localization, and Mesoscopic Phenomena » (AcademicPress 1995) V. Gurevich, D. Parshin and H. SchoberPhysicalreview B 67, 094203 (2003)