270 likes | 447 Views
Oddziaływanie grawitacyjne w układzie słonecznym. Monika Mazurek Klasa 1 wielozawodowa. Mikołaj Kopernik.
E N D
Oddziaływanie grawitacyjne w układzie słonecznym Monika Mazurek Klasa 1 wielozawodowa
MIKOŁAJ KOPERNIK, urodzony 19 lutego 1473 roku w Toruniu, zmarł 24 maja 1543 roku we Fromborku. Polski astronom, matematyk, ekonomista, duchowny. W latach 1491 - 1494 studiował w Akademii Krakowskiej, a następnie, od 1496 w Bolonii (astronomię) oraz, od 1501, w Padwie (prawo i medycynę). W Ferrarze uzyskał doktorat z prawa kanonicznego. W 1503 roku wrócił do Polski i osiadł we Fromborku, gdzie w 1497 został wybrany kanonikiem katedralnym, co zapewniało mu stabilne źródło utrzymania. Przez wiele lat rozwijał popartą własnymi obserwacjami teorię heliocentrycznej budowy Układu Słonecznego. W latach 1510 - 1514 rozpowszechniał Commentariolus, manuskrypt zawierający główne tezy jego teorii. Na druk pełnej wersji swego dzieła De revolutionibus orbium celestium zezwolił dopiero w 1540 roku. Pierwszy przekład "De revolutionibus" na język polski zawdzięczamy Janowi Baranowskiemu, dyrektorowi Obserwatorium Astronomicznego w Warszawie, który w 1854 r. opublikował nie tylko "O obrotach ciał niebieskich ksiąg sześć" (razem z tekstem łacińskim), lecz także - zgodnie z tradycją wydania bazylejskiego - "Opowiadanie pierwsze" Retyka. W 1953 r. ukazała się w Polsce krytyczna edycja łacińskiego tekstu pierwszych jedenastu rozdziałów księgi I "O obrotach" wraz z tłumaczeniem. Wydania dzieł wszystkich Kopernika podjął się Instytut Historii Nauki PAN. Mamy już tom zawierający reprodukcję rękopisu Kopernika (1972), krytyczne wydanie całego łacińskiego tekstu "De revolutionibus" (1975) oraz pełen jego przekład (1976). Przygotowywane jest tłumaczenie scripta minora zbierające drobne traktaty astronoma z Fromborka, zachowaną korespondencję i jego próby translatorskie z greki na łacinę
Teoria Heliocentryczna Heliocentryzm (gr. - Helios = słońce , centros = środek) to teoria na budowę Układu Słonecznego, według której w wersji historycznej Ziemia znajduje się w środku wszechświata, zaś w jego współczesnym wydaniu w centrum Układu Słonecznego jest słońce, a wszystkie planety, łącznie z Ziemią, je obiegają.
Prawo Kopernika-Greshama • Prawo Kopernika - Greshama to zasada mówiąca, że jeśli jednocześnie istnieją dwa rodzaje pieniądza, pod względem prawnym równowartościowe, ale jeden z nich jest postrzegany jako lepszy, ten "lepszy" pieniądz będzie gromadzony, a w obiegu pozostanie głównie ten "gorszy". Krótko mówiąc, gorszy pieniądz wypiera lepszy. • Odkrycie tego prawa przypisuje się Mikołajowi Kopernikowi , Thomasowi Greshamowi i kilku innym ekonomistom.
Mehanizm działania • Załóżmy, że w obiegu występują srebrne monety o wartości 100 kredytów każda, których łącznie jest 500 milionów sztuk. Bank centralny z braku srebra wypuszcza jednak kilka serii papierowych banknotów 100-kredytowych, w ilości 500 milionów, a parlament uchwala odpowiednie prawo przyznające im równą wartość. • Można by oczekiwać że po pewnym czasie 50% 100-kredytowych jednostek płatniczych w obiegu będą stanowić monety, a 50% banknoty. Ponieważ jednak ludzie uważają, że srebrne monety 100-kredytowe są bardziej wartościowe od papierowych banknotów 100-kredytowych, mając do dyspozycji zarówno banknoty jak i monety, będą preferowali wydanie banknotów, a oszczędzanie w srebrnych monetach. • Jeśli preferencje te będą wystarczająco silne, wkrótce być może 90% 100-kredytówek w obiegu będą stanowiły papierowe banknoty (których wszyscy wolą się pozbyć, ale prawnie muszą je akceptować), czyli "gorszy pieniądz wyprze lepszy" z obiegu, a 90% 100-kredytówek w oszczędnościach będą stanowiły srebrne monety (które wszyscy preferują), czyli "lepszy pieniądz wyprze gorszy" w oszczędnościach. • Mechanizm ten nie będzie miał miejsca jeśli nie będzie prawnego przymusu akceptacji pewnego rodzaju pieniądza, czyli w sytuacji braku banku centralnego.
Twierdzenie Kopernika • Twierdzenie Kopernika w geometrii zostało sformułowane przez polskiego astronoma Mikołaja Kopernika w dziele derelevoltiunibus orbitium coekestium. Wcześniej zostało ono odkryte przez arabskiego matematyka Nashir al. - Din Tushi. Identyczne rysunki w ich traktatach mogą sugerować, że Kopernik miał kontakt z tamtym dziełem
TREŚĆ • Jeśli wewnątrz dużego okręgu toczy się bez poślizgu okrąg o promieniu dwa razy mniejszym, to dowolny, lecz ustalony punkt małego okręgu porusza się po średnicy dużego.
Mikołaj Kopernik na bankomacie1000 zł z 1982 roku Mikołaj Kopernik na monetach 10 zł w okresie PRl Karta tytułowa 1 wydania De revolutionibus orbium coelestium
Ten wybitny astronom odkrył słynne prawa ruchu planet. Później prawa te zostały rozszerzone na wszystkie ciała niebieskie w Kosmosie. Trudne było życie Keplera, często gnębił go niedostatek. Mimo to wykazywał nie gasnący nigdy zapał do prac astronomicznych i wytrwałość, co przy wybitnych zdolnościach matematycznych stworzyło grunt pod doniosłe wyniki. Trzeba bowiem przyjąć zasadę, że geniusz to - obok zdolności - praca.
W r. 1591 został magistrem matematyki w Tübingen. W trzy lata później objął wykłady tego przedmiotu w Grazu, gdzie też w r. 1596 wydał drukiem pierwszą swą pracę Pt. "Mysterium Cosmographicum" (Tajemnica Kosmosu). Zwróciła ona uwagę Tychora i Galileusza. Niebawem jako protestant musi Kepler opuścić Graz. Udaje się do Pragi, gdzie Tycho angażuje go do pomocy przy opracowaniu tablic ruchu planet. Tablice te opierał on na doskonałych długoletnich ciągach obserwacji uraniborskich. Przy apodyktycznym charakterze Tychona współpraca nie ukłdała się pomyślnie. Gdy Tycho umarł, Kepler objął stanowisko "cesarskiego matematyka" z pensją 500 guldenów rocznie. Wtedy właśnie wykrył dwa pierwsze prawa ruchu planet, nazwane później "prawami Keplera". Ogłosił je drukiem w Pradze w "Astronomia nova" (1609). Oto ich brzmiene: (I) Orbita każdej planety jest elipsą za Słońcem w jednym z ognisk. (II) Promień wodzący planety zakreśla równe pola w różnych odstępach czasu.
Niebawem jednak zjawiły się kłopoty rodzinne i trudności w otrzymywaniu stałego wynagrodzenia. Trzeba było przerwać pracę naukową, a wziąć się do opracowywania kalendarzy i horoskopów astrologicznych. N dodatek umiera cesarz Rudolf II. Kepler traci stanowisko na dworze i musi przyjąć pracę nauczyciela w Linzu. Ale właśnie tam, w małej podówczas mieścinie, znalazł czas na napisanie dzieła "Harmonia mundi" (Harmonia świata), w którym ogłosił trzecie prawo ruchu planet. Ujął w prosty związek okresy obiegu planet (T) i połowy wielkich osi ich orbit (a): T12 : T22 = a13 : a23
Życie w Linzu też nie było dlań łatwe. Stracił swą pierwszą żonę, przeżył również długi, ciężki okres. Jego sędziwą matkę uznano za czarownicę i wytoczono proces. A jednak w tym ciężkim okresie ukończył tablice ruchu planet. Odtąd stanowiły one podstawę do wszystkich obliczeń ruchu planet na całe stulecia. Były to słynne "Tabulae Rudolphinae" z r. 1627.Po ich wydaniu Kepler opuścił Linz i w charakterze astrologa księcia Albrechta Wallensteina zamieszkał w Żaganiu na Śląsku. Działo się to jednak w okresie wojny trzydziestoletniej i możny protektor nie kwapił się z udzieleniem pomocy uczonemu. Toteż był on zmuszony udać się do Ratyzbony, aby upomnieć się o zaległą pensję "cesarskiego matematyka". W drodze rozchorował się i zmarł w 59 roku życia. Znaleziono przy nim w trokach 57 egzemplarzy jego "Efemeryd na rok 1631", 16 egzemplarzy "Tabulae Rudolphinae" oraz... 7 feningów gotówki. Keplera należy uważać za twórcę mechaniki nieba. Uzupełnił on w znakomity sposób teorię Kopernika i przygotował grunt Newtonowi do wykrycia prawa powszechnej grawitacji. Zbiorowe wydanie jego prac, które wyszło we Frankfurcie w latach 1858-71, liczy 8 tomów.
CYTATY: JAN KEPLER • Bóg jest matematykiem Należy stworzyć statki i żaglowce, poruszane niebieską bryzą. Wtedy nie zabraknie śmiałków, którym niestraszna pustka kosmosu.