1 / 39

Simplified Example of a LOCOS Fabrication Process

Simplified Example of a LOCOS Fabrication Process. Prof. A. Mason Electrical and Computer Engineering Michigan State University. LOCOS Defined. LOCOS = LOCal Oxidation of Silicon Defines a set of fabrication technologies where the wafer is masked to cover all active regions

arty
Download Presentation

Simplified Example of a LOCOS Fabrication Process

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Simplified Example of aLOCOS Fabrication Process Prof. A. Mason Electrical and Computer Engineering Michigan State University Prof. A. Mason

  2. LOCOS Defined • LOCOS = LOCal Oxidation of Silicon • Defines a set of fabrication technologies where • the wafer is masked to cover all active regions • thick field oxide (FOX) is grown in all non-active regions • Used for electrical isolation of CMOS devices • Relatively simple to understand so often used to introduce/describe CMOS fabrication flows • Not commonly used in modern fabrication • other techniques, such as Shallow Trench Isolation (STI) are currently more common than LOCOS Prof. A. Mason

  3. LOCOS –step 1 Form N-Well regions • Grow oxide • Deposit photoresist NWELL mask photoresist oxide p-type substrate Cross section view NWELL mask Layout view Prof. A. Mason

  4. LOCOS –step 1 Form N-Well regions • Grow oxide • Deposit photoresist • Pattern photoresist • NWELL Mask • expose only n-well areas NWELL mask photoresist oxide p-type substrate Cross section view NWELL mask Layout view Prof. A. Mason

  5. LOCOS –step 1 Form N-Well regions • Grow oxide • Deposit photoresist • Pattern photoresist • NWELL Mask • expose only n-well areas • Etch oxide • Remove photresist oxide p-type substrate Cross section view Layout view Prof. A. Mason

  6. LOCOS –step 1 Form N-Well regions • Grow oxide • Deposit photoresist • Pattern photoresist • NWELL Mask • expose only n-well areas • Etch oxide • Remove photoresist • Diffuse n-type dopants through oxide mask layer n-well p-type substrate Cross section view Layout view Prof. A. Mason

  7. LOCOS –step 2 Form Active Regions • Deposit SiN over wafer • Deposit photoresist over SiN layer ACTIVE mask n-well photoresist SiN p-type substrate ACTIVE mask Prof. A. Mason

  8. LOCOS –step 2 Form Active Regions • Deposit SiN over wafer • Deposit photoresist over SiN layer • Pattern photoresist • *ACTIVE MASK ACTIVE mask n-well photoresist SiN p-type substrate ACTIVE mask Prof. A. Mason

  9. LOCOS –step 2 Form Active Regions • Deposit SiN over wafer • Deposit photoresist over SiN layer • Pattern photoresist • *ACTIVE MASK • Etch SiN in exposed areas • leaves SiN mask which blocks oxide growth n-well photoresist SiN p-type substrate ACTIVE mask Prof. A. Mason

  10. LOCOS –step 2 Form Active Regions • Deposit SiN over wafer • Deposit photoresist over SiN layer • Pattern photoresist • *ACTIVE MASK • Etch SiN in exposed areas • leaves SiN mask which blocks oxide growth • Remove photoresist • Grow Field Oxide (FOX) • thermal oxidation n-well FOX p-type substrate ACTIVE mask Prof. A. Mason

  11. LOCOS –step 2 Form Active Regions • Deposit SiN over wafer • Deposit photoresist over SiN layer • Pattern photoresist • *ACTIVE MASK • Etch SiN in exposed areas • leaves SiN mask which blocks oxide growth • Remove photoresist • Grow Field Oxide (FOX) • thermal oxidation • Remove SiN n-well FOX p-type substrate ACTIVE mask Prof. A. Mason

  12. LOCOS –step 3 Form Gate (Poly layer) • Grow thin Gate Oxide • over entire wafer • negligible effect on FOX regions gate oxide Prof. A. Mason

  13. LOCOS –step 3 Form Gate (Poly layer) • Grow thin Gate Oxide • over entire wafer • negligible effect on FOX regions • Deposit Polysilicon • Deposit Photoresist POLY mask polysilicon gate oxide POLY mask Prof. A. Mason

  14. LOCOS –step 3 Form Gate (Poly layer) • Grow thin Gate Oxide • over entire wafer • negligible effect on FOX regions • Deposit Polysilicon • Deposit Photoresist • Pattern Photoresist • *POLY MASK • Etch Poly in exposed areas • Etch/remove Oxide • gate protected by poly POLY mask gate oxide POLY mask Prof. A. Mason

  15. LOCOS –step 3 Form Gate (Poly layer) • Grow thin Gate Oxide • over entire wafer • negligible effect on FOX regions • Deposit Polysilicon • Deposit Photoresist • Pattern Photoresist • *POLY MASK • Etch Poly in exposed areas • Etch/remove Oxide • gate protected by poly gate oxide Prof. A. Mason

  16. LOCOS –step 4 Form pmos S/D • Cover with photoresist PSELECT mask PSELECT mask Prof. A. Mason

  17. LOCOS –step 4 Form pmos S/D • Cover with photoresist • Pattern photoresist • *PSELECT MASK PSELECT mask POLY mask Prof. A. Mason

  18. LOCOS –step 4 Form pmos S/D • Cover with photoresist • Pattern photoresist • *PSELECT MASK • Implant p-type dopants • Remove photoresist p+ dopant p+ dopant POLY mask Prof. A. Mason

  19. LOCOS –step 5 Form nmos S/D • Cover with photoresist NSELECT mask p+ p+ p+ n POLY mask Prof. A. Mason

  20. LOCOS –step 5 Form nmos S/D • Cover with photoresist • Pattern photoresist • *NSELECT MASK NSELECT mask p+ p+ p+ n POLY mask Prof. A. Mason

  21. LOCOS –step 5 Form nmos S/D • Cover with photoresist • Pattern photoresist • *NSELECT MASK • Implant n-type dopants • Remove photoresist n+ n+ n+ p+ p+ p+ n n+ dopant n+ dopant POLY mask Prof. A. Mason

  22. LOCOS –step 6 Form Contacts • Deposit oxide • Deposit photoresist CONTACT mask n+ n+ n+ p+ p+ p+ n CONTACT mask Prof. A. Mason

  23. LOCOS –step 6 Form Contacts • Deposit oxide • Deposit photoresist • Pattern photoresist • *CONTACT Mask • One mask for both active and poly contact shown CONTACT mask n+ n+ n+ p+ p+ p+ n CONTACT mask Prof. A. Mason

  24. LOCOS –step 6 Form Contacts • Deposit oxide • Deposit photoresist • Pattern photoresist • *CONTACT Mask • One mask for both active and poly contact shown • Etch oxide n+ n+ n+ p+ p+ p+ n Prof. A. Mason

  25. LOCOS –step 6 Form Contacts • Deposit oxide • Deposit photoresist • Pattern photoresist • *CONTACT Mask • One mask for both active and poly contact shown • Etch oxide • Remove photoresist • Deposit metal1 • immediately after opening contacts so no native oxide grows in contacts • Planerize • make top level n+ n+ n+ p+ p+ p+ n Prof. A. Mason

  26. LOCOS –step 7 METAL1 mask Form Metal 1 Traces • Deposit photoresist n+ n+ n+ p+ p+ p+ n METAL1 mask Prof. A. Mason

  27. LOCOS –step 7 METAL1 mask Form Metal 1 Traces • Deposit photoresist • Pattern photoresist • *METAL1 Mask n+ n+ n+ p+ p+ p+ n METAL1 mask Prof. A. Mason

  28. LOCOS –step 7 Form Metal 1 Traces • Deposit photoresist • Pattern photoresist • *METAL1 Mask • Etch metal n+ n+ n+ p+ p+ p+ n metal over poly outside of cross section Prof. A. Mason

  29. LOCOS –step 7 Form Metal 1 Traces • Deposit photoresist • Pattern photoresist • *METAL1 Mask • Etch metal • Remove photoresist n+ n+ n+ p+ p+ p+ n Prof. A. Mason

  30. LOCOS –step 8 VIA mask Form Vias to Metal1 • Deposit oxide • Planerize oxide • Deposit photoresist n+ n+ n+ p+ p+ p+ n VIA mask Prof. A. Mason

  31. LOCOS –step 8 VIA mask Form Vias to Metal1 • Deposit oxide • Planerize • Deposit photoresist • Pattern photoresist • *VIA Mask n+ n+ n+ p+ p+ p+ n VIA mask Prof. A. Mason

  32. LOCOS –step 8 Form Vias to Metal1 • Deposit oxide • Planerize • Deposit photoresist • Pattern photoresist • *VIA Mask • Etch oxide • Remove photoresist n+ n+ n+ p+ p+ p+ n Prof. A. Mason

  33. LOCOS –step 8 Form Vias to Metal1 • Deposit oxide • Planerize • Deposit photoresist • Pattern photoresist • *VIA Mask • Etch oxide • Remove photoresist • Deposit Metal2 n+ n+ n+ p+ p+ p+ n Prof. A. Mason

  34. LOCOS –step 9 METAL2 mask Form Metal2 Traces • Deposit photoresist n+ n+ n+ p+ p+ p+ n METAL2 mask Prof. A. Mason

  35. LOCOS –step 9 METAL2 mask Form Metal2 Traces • Deposit photoresist • Pattern photoresist • *METAL2 Mask n+ n+ n+ p+ p+ p+ n METAL2 mask Prof. A. Mason

  36. LOCOS –step 9 Form Metal2 Traces • Deposit photoresist • Pattern photoresist • *METAL2 Mask • Etch metal n+ n+ n+ p+ p+ p+ n Prof. A. Mason

  37. LOCOS –step 9 Form Metal2 Traces • Deposit photoresist • Pattern photoresist • *METAL2 Mask • Etch metal • Remove photoresist n+ n+ n+ p+ p+ p+ n Prof. A. Mason

  38. LOCOS –step 10+ Form Additional Traces • Deposit oxide • Deposit photoresist • Pattern photoresist • Etch oxide • Deposit metal • Deposit photresist • Pattern photoresist • Etch metal • Repeat for each additional metal n+ n+ n+ p+ p+ p+ n p-type substrate Prof. A. Mason

  39. Simplifications from complete process • skipped several substrate doping steps • channel implant to adjust threshold voltages • surface implant to increase breakdown voltage • no LDD, lightly-doped drain • no deposition of contact interface materials • metal patterning simplified • more complex “lift-off” process often used • no overglass (thick top dielectric) layer • no bonding pad layer • simplified use of dark/clear field masks and positive/negative photoresist Prof. A. Mason

More Related