450 likes | 713 Views
MULTIFUNCTIONAL CHIRAL POLYMERIC MATERIALS CONTAINING SIDE-CHAIN AZOCARBAZOLE CHROMOPHORES. L. Angiolini, L. Giorgini , F. Mauriello Dipartimento di Chimica Industriale e dei Materiali, University of Bologna. R. Bozio, T. Dainese, D. Pedron
E N D
MULTIFUNCTIONAL CHIRAL POLYMERIC MATERIALS CONTAINING SIDE-CHAIN AZOCARBAZOLE CHROMOPHORES L. Angiolini, L. Giorgini, F. Mauriello Dipartimento di Chimica Industriale e dei Materiali, University of Bologna R. Bozio, T. Dainese, D. Pedron Dipartimento di Scienze Chimiche, University of Padova A. Golemme, R. Termine Dipartimento di Chimica, University of Calabria Synthesis of materials and characterization Photomodulation optical properties Photoconductive and photorefractive properties
Features of the multifunctional polymer studied POLYMERIC BACKBONE Mn = 13400 Mw /Mn = 1.8 Tg = 147°C Td = 363°C CHIRAL FUNCTIONALITY PHOTOCONDUCTIVE & PHOTOREFRACTIVE FUNCTIONALITY High Tg and decomposition temperatures PHOTOCHROMIC FUNCTIONALITY
2,5 2,0 1,5 Trans Cis Absorbance 1,0 0,5 0,0 200 300 400 500 600 Wavelength (nm) Carbazole Aromatic of azo-dyes 488 nm 633 nm Pump at 488 nm Probe at 633 nm Absorption in the visible: azo-dyes n *, * and CT el. trans.
Potential use as chiroptical switches Amplified Chirality CHIRAL GROUP PHOTOREFRACTIVE GROUP AZO-AROMATIC CHROMOPHORE Chiral conformation of one prevailing helical handedness + CD spectra Excitonic splitting - UV-vis spectra
104 Magnetic Tape 103 CD ROM 102 Small Mag.Disks Floppy disks Access time in milliseconds 101 Large Mag. Disks 100 10-1 Holographic Memories 10-2 106 107 108 109 1010 1011 1012 Capacity in bytes Photoconductive and photorefractive materials • Security from Forgery • Holographic Interferometry • Medical Application •Phase Conjugation • •Optical Device •Pattern Recognition • Optical Amplification • Holographic Data Storage • 3-D Holovideo Holographic Data Storage Nanolithography Electroluminescents Diodes Integrals circuits
MULTIFUNCTIONAL COPOLYMERS MULTIFUNCTIONAL OMOPOLYMERS MULTIFUNCTIONAL POLYMERS FOR PHOTONICS AND OPTOELECTRONICS Carbazole Chiral group Azobenzene Synthetic approach Multifunctional Polymers Chiral monomer with carbazole Chiral group Carbazole + Chiral monomer with azobenzene Azobenzene Multifunctional monomer Chiral group
Multifunctional copolymers synthetized Multifunctional homopolymers synthetized
Applications as Amorphous thin films obtained by spin-coating Thickness 100-400 nm <900 nm
trans cis rotational diffusion h h Ē STOP Photoinduced trans cis trans isomerization cycles trans
Reversible photoinduced orientation of azobenzene groups LP CP R. Hagen, T. Bieringer Adv. Mater13, 1805 (2001)
1 0 Typical experiment of photoinduced birefringence cycles Write and erase of optical information for OPTICAL STORAGE L. Angiolini, R. Bozio, L. Giorgini, D. Pedron, G. Turco, A. Daurù, Chem. Eur. J., 8, 4241 (2002) L. Angiolini, T. Benelli, R. Bozio, A. Daurù, L. Giorgini, D. Pedron, E. Salatelli, Macromolecules, 39, 489-497 (2006) L. Angiolini, T. Benelli, R. Bozio, A. Daurù, L. Giorgini, D. Pedron, E. Salatelli, Eur. Polym. J, in press (2007)
Photomodulation of birefringence on Poly[(S)-MLECA] Pump at 488 nm Ipump 100 mW/cm2 Probe at 633 nm Iprobe < 1 mW/cm2 Temporal stability of photoinduced signals Reversible write and erase of optical information for OPTICAL STORAGE
CHIROPTICAL SWITCHES Reversible inversion of the CD signal by irradiation with CP-L and/or CP-R light poly[(S)-MAP-N]Tg = 208 C thin films 100 300 nm I 160 mW/cm2 x 60 s L. Angiolini, R. Bozio, L. Giorgini, D. Pedron, G. Turco, A. Daurù, Chem. Eur. J., 8, 4241 (2002) L. Angiolini, R. Bozio, L. Giorgini, D. Pedron, Synth. Met., 138, 375-379 (2003) L. Angiolini, T. Benelli, R. Bozio, A. Daurù, L. Giorgini, D. Pedron, Synthetic Metals139, 743 (2003)
CHIROPTICAL SWITCHES Dipolar interactions Side-chain Chiral groups Azo-aromatic groups Reversal of the coils or of the domains by irradiating with CP light !?? CP-L CP-R CP-L CP-R L. Angiolini, T. Benelli, L. Giorgini, A. Painelli, F. Terenziani, Chem. Eur. J. (2005) L. Angiolini, T. Benelli, L. Giorgini, E. Salatelli, Polymer, 46, 2424 (2005) L. Angiolini, T. Benelli, L. Giorgini, E. Salatelli, Polymer, 47, 1875–1885 (2006)
CHIROPTICAL SWITCHES Photomodulation of the chiroptical properties of Poly[(S)-MLECA]
Surface relief gratings (SRGs) photoinduced on Poly[(S)-MLECA] Irradiation of azo polymer films with an interference pattern for a period of time longer than that required for photoinduced orientation produces a modification of the film surface.
Crossed Surface Relief Gratings SRGs, with 2 mm period, in the x-direction and 1 mm period, in the y-direction, SRGs with 1mm periods, in the x and y directions
5 mm Laser Induced Supramolecular Helix (LISH) inscribed on Poly[(S)-MLECA] Unusual superhelix-like (LISH) patterns can be directly photofabricated on the surface of azo polymer films by a interference pattern obtained by EP-L (ellipticity = 0.4) and EP-R (ellipticity < 0.4) light. Combination of the photoinduced chiral orientation and the photoinduced SRG formation. Helicoidal structures (LISH) superimposed to a SRG with a period of about 1mm
Photoconductivity properties of Poly[(S)-MLECA] 2.3x10-13 ScmW-1 at 60V/mm
ACKNOWLEDGEMENTS: Prof. Luigi Angiolini Dr. Tiziana Benelli Dr. Francesco Mauriello Dott. Elisabetta Salatelli Dott. Libero Damen Dott. Gianluca Perfetti University of Bologna Prof. Renato Bozio Prof. Danilo Pedron Dott. Tiziano Dainese Dott. Alessandro Daurù Photomodulation of birefringence, chiroptical switches and SRGs University of Padova Prof. Mauro Ghedini Prof. Attilio Golemme Dr. Roberto Termine Photoconductivity and Photorefractive properties University of Calabria Financial support by MIUR (FIRB 2001) and Consorzio INSTM is gratefully acknowledged
The author dedicates this work to the memory of Professor Carlo Carlini
PHOTORESPONSIVE PROPERTIES CONVENTIONAL MATERIALS CHIRAL PHOTOCHROMIC POLYMERS Photomodulation of linear birefringence and dichroism OPTICAL STORAGE AND CHIROPTICAL SWITCHES OPTICAL STORAGE Photomodulation of chiroptical properties CHIROPTICAL SWITCHES
ACKNOWLEDGEMENTS: Dr. Tiziana Benelli Dr. Daniele Caretti Dr. Elisabetta Salatelli Dr. Delio Alfino Dr. Saverio Cazzoli Dr. Ada delle Donne Mr. Marco Toto Dr. Alessandro Daurù Dr. Giovanni Turco Mr. Andrea Barbiero University of Bologna University of Padova Financial support by MIUR (PRIN 2001) and Consorzio INSTM is gratefully acknowledged
Heat poly[(S)-MAP-C] (Tg = 192 C), heated at 200 C
40 20 Ellipticity (mdeg) 0 CP-R -20 CP-L Heat -40 -60 Heat 2 Absorbance 1 0 250 350 450 550 Wavelength (nm) The application of heat seems to amplify the overall chirality of the system 190 C 230 C poly[(S)-MAP-C] Tg = 192 C L. Angiolini et al., Synth. Met., 138, 375-379 (2003)
Chirality increases with the increase of the tot. fluence poly[(S)-MAP-C] 184 nm I 200 mW/cm2 x 180 s 1th - 6th I 100 mW/cm2 x 180 s 7th - 8th I 50 mW/cm2 x 180 s 9th - 10th L. Angiolini et al., Synth. Met., (2003) in press
poly[(S)-MAP-C] 184 nm I 200 mW/cm2 x 180 s 1th - 6th I 100 mW/cm2 x 180 s 7th - 8th I 50 mW/cm2 x 180 s 9th - 10th poly[(R)-MAP-C] 210 nm I 100 mW/cm2 x 400 s 1th - 10th
Synthesis of multifunctional monomers Biphasic medium H2O/CH2Cl2
Photoinduced aggregation? Modification in shape and intensity of the CD and abs. spectra CP-L CP-R
CP-L CP-R Temporal and thermal stability of photoinduced CD signals poly[(S)-MAP-C] 170 nm I 400 mW/cm2 x 180 s Temporal and thermal stability L. Angiolini et al., Synth. Met., in press (2003)
CHIROPTICAL SWITCHES poly[(S)-MAP-N-co-DR1M] 50/50 Film thin 290 nm I 50 mW/cm2 x 180 s 1th - 3th I 100 mW/cm2 x 180 s 4h - 7th I 200 mW/cm2 x 180 s 8th - 10th
M. Ivanov, et al.,J. Mod. Opt.2000, 47, 861. G. Iftime, et al., J. Am. Chem. Soc.2000, 122, 12646. After ordering with LP light LC smectic-A phase
The properties of the materials change by using different co-monomers
Materiali fotorifrattivi Effetto fotorifrattivo • I processi fisici legati al meccanismo fotorifrattivo sono: • Assorbimento della radiazione luminosa con generazione di cariche • Trasporto delle cariche • Intrappolamento delle cariche • Generazione di un campo elettrico interno • Riorientazione molecolare interna con variazione dell’indice di rifrazione DEFINIZIONE: L’effetto fotorifrattivo (PRe) si riferisce alla modulazione spaziale dell’indice di rifrazione generato da un meccanismo specifico: la ridistribuzione fotoindotta di carica in un materiale nel quale l’indice di rifrazione dipende dal campo elettrico applicato.
Materiali fotorifrattivi Effetto fotorifrattivo Molecole organiche coinvolte nel processo Photorefractive material = Photoconducting material +NLO chromophore
Scelta gruppo fotoconduttore Carbazolo Il gruppo carbazolico forma relativamente cationi radicalici stabili (holes) Il carbazolo è un intermedio relativamente economico. Differenti sostituenti possono essere facilmente introdotti nell’anello carbazoico. Materiali contenenti i gruppi carbazolici sono caratterizzati da una elevata stabilità termica e fotochimica Il gruppo carbazolico permette una maggiore coniugazione lungo la catena laterale
d d d b b b h g h g * * g h * e,f e,f e,f 8,1,6 8,1,6 a a 8,1,6 a 4 4 4 5,2 5,2 c c 5,2 c a b Spettroscopia 1H-NMR Omopolimero poli[(S)-MLECA] (S)-MLECA poli[(S)-MLECA] Scomparsa del segnale dei protoni del CH2 metacrilico
Misure di dicroismo circolare stato solido SOLUZIONE STATO SOLIDO + Conservazione ordinamento cromofori - couplet eccitonico Potenziali swithes chiroottici
Misure di fotoconduzione Risultati Preliminari Poly [(S)-(+)-MECP] Poly [(S)-MECPS] PROPRIETA’ FOTOCONDUTTIVE 2 ordini di grandezza maggiore