220 likes | 444 Views
Sara Esparza Cesar Olmedo Alonzo Perez. Combustion Team Supersonic Combustion. Faculty Advisors:. Student Researchers:. Dr. Guillaume Dr. Wu Dr. Boussalis Dr. Liu Dr. Rad. Purpose. To achieve and sustain Mach 1.0 to 2.0 speed, induce mixing and sustain combustion for a duration.
E N D
NASA Grant URC NCC NNX08BA44A Sara Esparza Cesar Olmedo Alonzo Perez Combustion TeamSupersonic Combustion Faculty Advisors: Student Researchers: Dr. Guillaume Dr. Wu Dr. Boussalis Dr. Liu Dr. Rad
NASA Grant URC NCC NNX08BA44A Purpose To achieve and sustain Mach 1.0 to 2.0 speed, induce mixing and sustain combustion for a duration
NASA Grant URC NCC NNX08BA44A Final Design
NASA Grant URC NCC NNX08BA44A Intake Manifold
NASA Grant URC NCC NNX08BA44A Purpose of Intake Manifold • Will assist in premixing concept • Determine if injection of hydrogen will effect nozzle performance • If no effect is determine we will introduce • Hydrogen • Silane
NASA Grant URC NCC NNX08BA44A Intake ManifoldProgress Side View FrontView
NASA Grant URC NCC NNX08BA44A Converging Diverging Nozzle SectionView FrontView
NASA Grant URC NCC NNX08BA44A Intake and Nozzle Side View
NASA Grant URC NCC NNX08BA44A Intake and Nozzle Front View
NASA Grant URC NCC NNX08BA44A Combustion Chamber
NASA Grant URC NCC NNX08BA44A Combustion ChamberProgress
NASA Grant URC NCC NNX08BA44A Dr. Wu Pressure Adaptor Front View
NASA Grant URC NCC NNX08BA44A Pressure Testing • Will use Dr Wu pressure adaptor to determine if hydrogen gas will effect nozzle performance. • Comparing past nozzle value with intake manifold and hydrogen gas set up
Pressure Reading at Nozzle Exit • Pressure gage reading • Anderson’s text: Mach 2.6 • Area ratio: 2.89
NASA Grant URC NCC NNX08BA44A New ignition System • Three telsa coils ( one for each spark plug) • 13 V DC 1 Amp power source that is button operated • All wire will be insulated and routed away from any flammable sources
NASA Grant URC NCC NNX08BA44A New Ignition Source:Tesla Coil • Allows for continuous spark • Strong spark across air flow • Resonant transformer circuit
NASA Grant URC NCC NNX08BA44A Tesla Coil • Resonant transformer circuit • High voltage • Low current • High frequency alternating current electricity • Loosely coupled coil winding
NASA Grant URC NCC NNX08BA44A Final Design
NASA Grant URC NCC NNX08BA44A Future Work • Test new Intake manifold with hydrogen • Determine premixing option • Incorporate telsa coil • Develop new ignition system • Acquire silane • Finish combustion chamber
NASA Grant URC NCC NNX08BA44A Timeline2009 - 2010
Textbook References Anderson, J. “Compressible Flow.” Anderson, J. “Hypersonic & High Temperature Gas Dynamics” Curran, E. T. & S. N. B. Murthy, “Scramjet Propulsion” AIAA Educational Series, Fogler, H.S. “Elements of Chemical Reaction Engineering” Prentice Hall International Studies. 3rd ed. 1999. Heiser, W.H. & D. T. Pratt “Hypersonic Airbreathing Propulsion” AIAA Educational Series. Olfe, D. B. & V. Zakkay “Supersonic Flow, Chemical Processes, & Radiative Transfer” Perry, R. H. & D. W. Green “Perry’s Chemical Engineers’ Handbook” McGraw-Hill Turns, S.R. “An Introduction to Combustion” White, E.B. “Fluid Mechanics”. 9/7/2014 NASA Grant URC NCC NNX08BA44A 21
Journal References Allen, W., P. I. King, M. R. Gruber, C. D. Carter, K. Y Hsu, “Fuel-Air Injection Effects on Combustion in Cavity-Based Flameholders in a Supersonic Flow”. 41st AIAA Joint Propulsal. 2005-4105. Billig, F. S. “Combustion Processes in Supersonic Flow”. Journal of Propulsion, Vol. 4, No. 3, May-June 1988 Da Riva, Ignacio, Amable Linan, & Enrique Fraga “Some Results in Supersonic Combustion” 4th Congress, Paris, France, 64-579, Aug 1964 Esparza, S. “Supersonic Combustion” CSULA Symposium, May 2008. Grishin, A. M. & E. E. Zelenskii, “Diffusional-Thermal Instability of the Normal Combustion of a Three-Component Gas Mixture,” Plenum Publishing Corporation. 1988. Ilbas, M., “The Effect of Thermal Radiation and Radiation Models on Hydrogen-Hydrocarbon Combustion Modeling” International Journal of Hydrogen Energy. Vol 30, Pgs. 1113-1126. 2005. Qin, J, W. Bao, W. Zhou, & D. Yu. “Performance Cycle Analysis of an Open Cooling Cycle for a Scramjet” IMechE, Vol. 223, Part G, 2009. Mathur, T., M. Gruber, K. Jackson, J. Donbar, W. Donaldson, T. Jackson, F. Billig. “Supersonic Combustion Experiements with a Cavity-Based Fuel Injection”. AFRL-PR-WP-TP-2006-271. Nov 2001 McGuire, J. R., R. R. Boyce, & N. R. Mudford. Journal of Propulsion & Power, Vol. 24, No. 6, Nov-Dec 2008 Mirmirani, M., C. Wu, A. Clark, S, Choi, & B. Fidam, “Airbreathing Hypersonic Flight Vehicle Modeling and Control, Review, Challenges, and a CFD-Based Example” Neely, A. J., I. Stotz, S. O’Byrne, R. R. Boyce, N. R. Mudford, “Flow Studies on a Hydrogen-Fueled Cavity Flame-Holder Scramjet. AIAA 2005-3358, 2005. Tetlow, M. R. & C. J. Doolan. “Comparison of Hydrogen and Hydrocarbon-Fueld Scramjet Engines for Orbital Insertion” Journal of Spacecraft and Rockets, Vol 44., No. 2., Mar-Apr 2007. 9/7/2014 NASA Grant URC NCC NNX08BA44A 22