230 likes | 378 Views
Sara Esparza Cesar Olmedo Alonzo Perez. Combustion Team High Speed Combustion. Faculty Advisors:. Student Researchers:. Dr. Guillaume Dr. Wu Dr. Boussalis Dr. Liu Dr. Rad. Purpose. To achieve and sustain Mach 1.0 to 2.0 speed, induce mixing and sustain combustion for a duration.
E N D
NASA Grant URC NCC NNX08BA44A Sara Esparza Cesar Olmedo Alonzo Perez Combustion TeamHigh Speed Combustion Faculty Advisors: Student Researchers: Dr. Guillaume Dr. Wu Dr. Boussalis Dr. Liu Dr. Rad
NASA Grant URC NCC NNX08BA44A Purpose To achieve and sustain Mach 1.0 to 2.0 speed, induce mixing and sustain combustion for a duration
NASA Grant URC NCC NNX08BA44A Converging-Diverging Nozzle • Nozzle brings air up to speed • Entry and exit nozzle views
CD Nozzle Drawing 9/21/2014 NASA Grant URC NCC NNX08BA44A
CD Nozzle Calculations Throat D= .13 Expansion Area Ratio Compression Area Ratio D=.22 D=.30 Isentropic flow properties Expansion Area Ratio Expansion Area Ratio Throat A 2.86 M = 2.4 A Throat Area 9/21/2014 NASA Grant URC NCC NNX08BA44A
NASA Grant URC NCC NNX08BA44A Nozzle Data
NASA Grant URC NCC NNX08BA44A Initial Testing • Tested nozzle design
Pressure Reading at Nozzle Exit • Pressure gage reading • Anderson’s text: Mach 2.6 • Area ratio: 2.89
NASA Grant URC NCC NNX08BA44A Numerical and Experimental Results Coincide • Exit pressure corresponds to 5.23 psia as seen in testing
NASA Grant URC NCC NNX08BA44A Nozzle Error • 22% Error between Experimental and Numerical Calculations
NASA Grant URC NCC NNX08BA44A Testing • Picture of the set up • Used hydrogen tank from MFDCLab • Combustion occurred • Below Mach one
NASA Grant URC NCC NNX08BA44A Mixing Cavity & Combustor • Initial Concept • Use cavity to re-circulate fuel and air improve mixing • Produce ideal combustion environment
NASA Grant URC NCC NNX08BA44A Ignition System Car distributor
Overall Design Fuel inlet Fuel inlet Lab Supply Quick Release – CD Nozzle Connection Section View 9/21/2014 NASA Grant URC NCC NNX08BA44A
NASA Grant URC NCC NNX08BA44A Testing Results • We developed combustion • Flow speed was not supersonic • Cavity was too big and it produced a bow shock and reduced flow
NASA Grant URC NCC NNX08BA44A Final Design • Met with Dr Wu to develop • Smaller cavity • Development of hydrogen and spark plug manifold
NASA Grant URC NCC NNX08BA44A Pathlines and Particle Tracing
NASA Grant URC NCC NNX08BA44A Final Design
NASA Grant URC NCC NNX08BA44A Final Design • Solidworks assembly • Side and front views
NASA Grant URC NCC NNX08BA44A Future Work • Test at supersonic speeds • Incorporate heating coil • Add insulation • Acquire silane • Purchase Gambit or ICES
Textbook References Anderson, J. “Compressible Flow.” Anderson, J. “Hypersonic & High Temperature Gas Dynamics” Curran, E. T. & S. N. B. Murthy, “Scramjet Propulsion” AIAA Educational Series, Fogler, H.S. “Elements of Chemical Reaction Engineering” Prentice Hall International Studies. 3rd ed. 1999. Heiser, W.H. & D. T. Pratt “Hypersonic Airbreathing Propulsion” AIAA Educational Series. Olfe, D. B. & V. Zakkay “Supersonic Flow, Chemical Processes, & Radiative Transfer” Perry, R. H. & D. W. Green “Perry’s Chemical Engineers’ Handbook” McGraw-Hill Turns, S.R. “An Introduction to Combustion” White, E.B. “Fluid Mechanics”. 9/21/2014 NASA Grant URC NCC NNX08BA44A 22
Journal References Allen, W., P. I. King, M. R. Gruber, C. D. Carter, K. Y Hsu, “Fuel-Air Injection Effects on Combustion in Cavity-Based Flameholders in a Supersonic Flow”. 41st AIAA Joint Propulsal. 2005-4105. Billig, F. S. “Combustion Processes in Supersonic Flow”. Journal of Propulsion, Vol. 4, No. 3, May-June 1988 Da Riva, Ignacio, Amable Linan, & Enrique Fraga “Some Results in Supersonic Combustion” 4th Congress, Paris, France, 64-579, Aug 1964 Esparza, S. “Supersonic Combustion” CSULA Symposium, May 2008. Grishin, A. M. & E. E. Zelenskii, “Diffusional-Thermal Instability of the Normal Combustion of a Three-Component Gas Mixture,” Plenum Publishing Corporation. 1988. Ilbas, M., “The Effect of Thermal Radiation and Radiation Models on Hydrogen-Hydrocarbon Combustion Modeling” International Journal of Hydrogen Energy. Vol 30, Pgs. 1113-1126. 2005. Qin, J, W. Bao, W. Zhou, & D. Yu. “Performance Cycle Analysis of an Open Cooling Cycle for a Scramjet” IMechE, Vol. 223, Part G, 2009. Mathur, T., M. Gruber, K. Jackson, J. Donbar, W. Donaldson, T. Jackson, F. Billig. “Supersonic Combustion Experiements with a Cavity-Based Fuel Injection”. AFRL-PR-WP-TP-2006-271. Nov 2001 McGuire, J. R., R. R. Boyce, & N. R. Mudford. Journal of Propulsion & Power, Vol. 24, No. 6, Nov-Dec 2008 Mirmirani, M., C. Wu, A. Clark, S, Choi, & B. Fidam, “Airbreathing Hypersonic Flight Vehicle Modeling and Control, Review, Challenges, and a CFD-Based Example” Neely, A. J., I. Stotz, S. O’Byrne, R. R. Boyce, N. R. Mudford, “Flow Studies on a Hydrogen-Fueled Cavity Flame-Holder Scramjet. AIAA 2005-3358, 2005. Tetlow, M. R. & C. J. Doolan. “Comparison of Hydrogen and Hydrocarbon-Fueld Scramjet Engines for Orbital Insertion” Journal of Spacecraft and Rockets, Vol 44., No. 2., Mar-Apr 2007. 9/21/2014 NASA Grant URC NCC NNX08BA44A 23