1 / 12

Chapter 18

Chapter 18. Solubility and Complex-Ion Equilibria. Overview. Solubility Equilibria Solubility Product Constant Solubility and Common Ion Effect Precipitation Calculations Effect of pH on Solubility Complex-Ion Equilibria Complex Ion Formation Complex Ions and Solubility

atira
Download Presentation

Chapter 18

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 18 Solubility and Complex-Ion Equilibria

  2. Overview • Solubility Equilibria • Solubility Product Constant • Solubility and Common Ion Effect • Precipitation Calculations • Effect of pH on Solubility • Complex-Ion Equilibria • Complex Ion Formation • Complex Ions and Solubility • Application of Solubility Equilibria • Qualitative analysis of metal ions

  3. Solubility Equilibria • Solubility of a solid treated as with other equilibria. Solution is saturated. No more solid will dissolve since dynamic equilibrium. AgCl(s)  Ag+(aq) + Cl(aq) Ksp = [Ag+][Cl] • Solid not included in the equilibrium expression. • MyXz(s)  yM+p(aq)+zXq(aq) Ksp=[M+p]y[Xq]z where Ksp = solubility product. E.g. determine the equilibrium expression for each: PbCl2, Ag2SO4,Al(OH)3. • Ksp can be determined if the solubility is known. E.g. Determine Ksp for silver chromate (Ag2CrO4) if its solubility in water is 0.0290 g/L at 25C. • Determine molar solubility. • Determine Ksp. E.g. 2 Determine Ksp of CaF2 if its solubility is 2.20x104M.

  4. SOLUBILITY FROM Ksp • Can be determined by using stoichiometry to express all quantities in terms of one variable- solubility, x. i.e. for the reaction. Use equilibrium table to write concentration of each in terms of the compound dissolving E.g. determine the solubility of PbCl2 if its Ksp = 1.2x105 PbCl2(s)  Pb2+(aq) + 2Cl(aq) E.g.1 Determine solubility of AgCl if its Ksp = 1.8x1010M2. E.g.2 Determine solubility of Ag2CO3 if its Ksp = 8.1x1012M3. E.g.3 Determine solubility of Fe(OH)3 if its Ksp = 4x1038M4

  5. Factors that Affect Solubility • The common–Ion effect(Remember LeChatelier’s Principle) E.g. Determine solubility of PbCl2 (Ksp = 1.2x105)in 0.100M NaCl. • Write equilibrium table in terms of x and [Cl] a common–ion reduces the solubility of the compound. • Assume that [Cl]NaCl >>x • Solve for x. • E.g. determine the solubility of CaF2 in a solution of CaCl2. Ksp = 3.9x1011.

  6. Precipitation of Ionic Compounds • Starting with two solutions, Qsp used to predict precipitation and even the extent of it. • Precipitation = reverse of dissolution • Precipitation occurs when Qsp > Ksp until Qsp = Ksp • If Qsp < Ksp, precipitation won’t occur. E.g. determine if precipitation occurs after mixing 50.00 mL 3.00x103 M BaCl2 and 50.00 mL 3.00x103 M Na2CO3. Solution: • CBaCl2 = 1.50x103 M; CNa2CO3 = 1.50x103 M • Qsp = 1.50x103 M1.50x103 M = 2.25x106 • Qsp >1.1x1010.= Ksp precipitation. E.g. 2 determine equilibrium concentration of each after precipitation occurs. Solution: • assume complete precipitation occurs; • set up equilibrium table; and solve for equilibrium concentration of barium and carbonate ion concentrations.

  7. Precipitation of Ionic Compounds Eg. 3 determine the fraction of Ba2+ that has precipitated. Solution: • Use the amount remaining in solution (results of E.g. 2) divided by starting concentration to determine the fraction of barium that is left in solution. • Subtract from above. E.g.4 determine the Br concentration when AgCl starts to precipitate if the initial concentration of bromide and chloride are 0.100 M. Ksp(AgBr) = 5.0x1013; Ksp(AgCl) = 1.8x1010.

  8. Factors that Affect Solubility-pH • pH of the Solution: LeChatelier’s Principle again. E.g. determine the solubility of CaF2 at a pH of 2.00. Ksp = 3.9x1011. Ka(HF) = 6.6x104. Strategy: • Determine the ratio of [F] and [HF] from the pH and Ka. • Write an expression for solubility in terms of Ka and pH and • Substitute into solubility equation to determine the solubility. Solution: • Ksp = 3.9x1011 = x[F]2 (pH changes the amount of free Fluoride.) • Let x = solubility. Then 2x = [F] + [HF] • From equilibrium equation: • 2x = [F](1+1/0.066) = 16.15*[F] or • [F] = 2*x/16.15 = 0.124*x • 3.9x1011 = x(0.0124*x)2 • x = 1.36x103 M vs. 2.13x104 M (normal solubility)

  9. Separation of Ions By Selective Precipitation • Metal ions with very different Ksp can be separated. • Divalent metal ions are often separated using solubility variations for the metal sulfides. • Solution is saturated with H2S at 0.100 M; pH adjusted to keep one component soluble and the other insoluble. • H2S is diprotic acid; the overall reaction to get to sulfide is: • Combine with solubility equilibrium reaction to get the overall equilibrium expression and constant. E.g. determine the solubility of 0.00500 M Zn2+ in 0.100 M H2S at pH = 1. Ksp = 1.10x1021.

  10. Complex Ions • Formation of Complex Ions (Coordination Complexation ) = an ion formed from a metal ion with a Lewis base attached to it by a coordinate covalent bond. Ag+(aq) + 2NH3(aq)  Ag(NH3)2(aq) Kf = 1.7x107 • Large equilibrium constant indicates that “free” metal is completely converted to the complex. Eg. What is the concentration of the silver amine complex above in a solution that is originally 0.100 M Ag+ and 1.00 M NH3? E.g. determine the [Ag+] (free silver concentration) in 0.100 M AgNO3 that is also 1.00 M NaCN.

  11. Factors that Affect Solubility: Complexation • Free metal ion concentration in solution is reduced when complexing agent added to it; • Free metal ion concentration needed in solubility expression. E.g. determine if precipitation will occur in a solution containing 0.010 M AgNO3 and 0.0100 M Nal in 1.00 M NaCN. Recall Kf = 5.6x1018 Agl(s)Ag+ + l Ksp = 8.5.x1017 Strategy: • Determine the free metal concentration in the solution. • Use free metal concentration with iodide concentration to get Qsp • If Qsp < Ksp, no precipitation • If Qsp > Ksp, precipitation • If Qsp = Ksp, precipitation is starting.

  12. Solubility with Complexing Agent E.g. Determine the solubility of AgI in 1.00 M NaCN. Recall Kf = 5.6x1018 Agl(s)Ag+ + l Ksp = 8.5.x1017 Strategy: • Combine to equilibria equations to find a single equation describing the equilibrium. the presence of a complexing agent increases the solubility • Setup equilibrium table and solve.

More Related