1 / 41

EDMs, the LHC, and the Origin of Matter

EDMs, the LHC, and the Origin of Matter. M.J. Ramsey-Musolf Wisconsin-Madison. NPAC. Theoretical Nuclear, Particle, Astrophysics & Cosmology. http://www.physics.wisc.edu/groups/particle-theory/. NC State Seminar, March 2009. Cosmic Energy Budget. Dark Matter.

aurorette
Download Presentation

EDMs, the LHC, and the Origin of Matter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EDMs, the LHC, and the Origin of Matter M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ NC State Seminar, March 2009

  2. Cosmic Energy Budget Dark Matter Leptogenesis: discover the ingredients: LN- & CP-violation in neutrinos Baryogenesis & EDMs Higgs Phenomenology D. Chung Wisconsin V. Cirigliano LANL B. Garbrecht Wisconsin C. Lee LBL Y. Li Wisconsin S. Profumo UC Santa Cruz S. Tulin Caltech G. Shaugnessy Wisconsin Dark Energy Baryons V. Barger Wisconsin P. Langacker IAS M. McCaskey Wisconsin D. O’Connell IAS S. Profumo UC Santa Cruz G. Shaugnessy ANL/Northwestern M. Wise Caltech Weak scale baryogenesis: test experimentally: EDMs & Higgs Boson Searches PRD 71: 075010 (2005) PRD 73: 115009 (2006) JHEP 0607:002 (2006 ) PRD 78:075009 (2008) PRL 102:061301 (2009) PLB 673: 95 (2009) PRD 75: 037701 (2007) JHEP 0807:010 (2007) PRD 77: 035005 (2008) PRD79: 015018 (2009) What are the quantitative implications of new EDM experiments for explaining the origin of the baryonic component of the Universe ? What are the implications of Higgs searches at LHC and Higgs studies at ILC for explaining the baryon asymmetry ? Explaining non-zero rB requires CP-violation and a scalar sector beyond those of the Standard Model (assuming inflation set rB=0) What is the origin of baryonic matter ?

  3. Outline Baryogenesis: General Features Preview of main results Computing YB systematically: progress & challenges Illustrative phenomenology in MSSM: EDMs & the LHC

  4. I. Baryogenesis: General Features

  5. Anomalous B-violating processes Sakharov Criteria • B violation • C & CP violation • Nonequilibrium dynamics Prevent washout by inverse processes Sakharov, 1967 SM Sphalerons:  SM CKM CPV: SM EWPT: EDMs LHC: Scalars   Baryogenesis: Ingredients

  6. Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967 Kuzmin, Rubakov, Shaposhnikov McLerran,… EW Baryogenesis: Standard Model Anomalous Processes Different vacua: D(B+L)= DNCS Sphaleron Transitions

  7. Shaposhnikov Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics 1st order 2nd order Sakharov, 1967 • CP-violation too weak • No EWPT Increasing mh EW Baryogenesis: Standard Model

  8. Quantum Transport CPV Chem Eq R-M et al Unbroken phase Weak Scale Baryogenesis Systematic baryogenesis: SD equations + power counting Veff (f,T): Requirements on Higgs sector extensions & expt’l probes • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions EDM sensitivity to CPV phases relevant for EWB: leptonic, hadronic, & nuclear Broken phase CP Violation 1st order phase transition Sakharov, 1967 Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (numerical) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD • Is it viable? • Can experiment constrain it? • How reliably can we compute it? • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Baryogenesis: New Electroweak Physics

  9. CKM EDMs: New CPV? • SM “background” well below new CPV expectations • New expts: 102 to 103 more sensitive • CPV needed for BAU?

  10. Theory Cosmology LHC Implications Theory EDMs Baryogenesis: EDMs & Colliders

  11. Present n-EDM limit Proposed n-EDM limit Matter-Antimatter Asymmetry in the Universe ? Better theory ? New theory ? Leptogenesis ? EDMs & EWB: What We May Learn “n-EDM has killed more theories than any othersingle experiment”

  12. II. Preview: Main Results

  13. +-driven EWB 0-driven EWB Resonant EWB Prospective dn LHC reach LEP II excl Present de MSSM Baryogenesis: EDMs & LHC Cirigliano, Profumo, R-M

  14. Arg(M1b*) = Arg(M2b*) / Compatible with observed YB Probing the CPV Phase Structure New 2-loop EDM calc Res  EWB not compatible with dn Res & non-res  EWB compatible with future dn Li, Profumo, Ramsey-Musolf

  15. Small tan Large tan YB & Particle Spectrum: LHC & g-2 YB dependence on third generation sparticle masses & tan Magnitude & sign of YB sensitive to third generation sfermion spectrum for given CPV phase Chung,Garbrecht, Ramsey-Musolf, Tulin

  16. III. Computing YB

  17. CPV phases Parameters in Lnew Bubble & PT dynamics Departure from equilibrium • Earliest work: QM scattering & stat mech • New developments: non-equilibrium QFT Systematic Baryogenesis Goal: Derive dependence of YB on parameters Lnew systematically (controlled approximations)

  18. nL produced on short time scale compared to WS nL to B conversion Unbroken phase Topological transitions Broken phase nL produced in wall & diffuses in front 1st order phase transition FWS(x) ->0 deep inside bubble Systematic Baryogenesis Cohen, Kaplan, Nelson Joyce, Prokopec, Turok “snow”

  19. Assumptions: LI Evolution is adiabatic Spectrum is non-degenerate Density is zero Evolution is non-adiabatic: vwall > 0 -> decoherence Spectrum is degenerate: T > 0 -> Quasiparticles mix Density is non-zero Quantum Transport & Baryogenesis Electroweak Baryogenesis Particle Propagation: Beyond familiar (Peskin) QFT

  20. Fast, but not too fast Work to lowest, non-trivial order in e’s Error is O (e) ~ 0.1 ed =vw (k / w ) << 1 Hot, but not too hot Cirigliano, Lee, R-M ep = Gp / w << 1 Dense, but not too dense em = m / T << 1 Systematically derive transport eq’s from Lnew Evolution is non-adiabatic: vwall > 0 -> decoherence Spectrum is degenerate: T > 0 -> Quasiparticles mix Density is non-zero Competing Dynamics CPV Ch eq Cirigliano, Lee,Tulin, R-M Quantum Transport & Baryogenesis Electroweak Baryogenesis Scale Hierarchy:

  21. GY >> other rates? (No) • Majorana fermions ? (densities decouple) • Particle-sparticle eq? • Vev resummation ? = + Expand in ed,p,m CP violating sources + From S-D Equations: Chiral Relaxation • SCPV • GM , GH , GY … Approximations Producing nL = 0 Strong sphalerons Riotto, Carena et al, R-M et al, Konstandin et al • Neglect O(e3) terms • Others under scrutiny • SCPV • GM , GH , GY , GSS … + R-M, Chung, Tulin, Garbrecht, Lee, Cirigliano R-M et al Objectives: • Determine param dep of SCPV and all Gs and not just that of SCPV • Develop general methods for any model with new CPV • Quantify theor uncertainties Currents Links CP violation in Higgs and baryon sectors Quantum Transport Equations

  22. Our Work Applied to MSSM • Resonant enhancements in chiral relaxation offsets resonant CPV • Three-body contributions enhance Yukawa rates • Large tan (g-2) regime quenches YB and introduces strong dependence on SUSY spectrum • EDM constraints imply non-universal gaugino phases

  23. M1 0 -mZ cosb sinqW mZ cosb cosqW T ~TEW : scattering of H,W from background field MN = ~ ~ T ~ TEW mZ sinb sinqW M2 -mZ sinb sinqW 0 CPV 0 -m -mZ cosb sinqW mZ cosb cosqW -m T << TEW : mixing of H,W to c+, c0 mZ sinb sinqW -mZ sinb sinqW 0 ~ ~ ~ ~ sin  Arg(M1b*) = Arg(M2b*) M2 MC = m Illustrative Study: MSSM Chargino Mass Matrix Neutralino Mass Matrix Resonant CPV: M1,2 ~ m

  24. F2: EWPO imply suppression Higgsinos Squarks Impt to compute both num and den consistently Baryon Number: MSSM

  25. CP violation Relaxation Huet & Nelson Resonant CPV & Relaxation

  26. tL tR tL our GY previous GY g H Cirigliano, Lee, R-M, Tulin Joyce, Prokopec, Turok m Baryon Number & GY

  27. Small tan: strong sphalerons induce 1st & 2nd gen quark contributions to counteract 3rd generation chiral asymmetry Large tan: 3rd generation chiral asymmetry vanishes: no strong sphaleron-induced 1st & 2nd gen quark contributions Small tannegligible Yb, effects tan=20: impt Yb, effects Canceling t,b (s)quark contributions Enhanced light stau contributions Small tan : nleft=5Q+4T Baryogenesis: tan  effects Transport, Spectrum, & EDMs + SUSY Chung,Garbrecht, R-M, Tulin: PRL 102:061301 (2009)

  28. IV. Phenomenology: EDMs, LHC, & YB

  29. QCD QCD QCD EDMs: Complementary Searches Improvements of 102 to 103 Electron Neutron Neutral Atoms Deuteron

  30. mN=2.2 GeV Schiff Screening Improvements of 102 to 103 Electron ChPT for dn: van Kolck et al Atomic effect from nuclear finite size: Schiff moment Hadronic couplings Neutron EDM from LQCD: Nuclear Schiff Moment Pospelov et al: QCD QCD QCD Nuclear EDM: Screened in atoms • Two approaches: • Expand in q & average over topological sectors (Blum et al, Shintani et al) • Compute DE for spin up/down nucleon in background Efield (Shintani et al) PCAC + had models & QCD SR QCD SR (Pospelov et al) EDMs: Theory Neutron Neutral Atoms Deuteron

  31. Liu et al: New formulation of Schiff operator New nuclear calc’s needed + … Dominant in nuclei & atoms Nuclear & hadron structure Schiff Moment in 199Hg Engel & de Jesus: Reduced isoscalar sensitivity ( qQCD ) EDMs & Schiff Moments One-loop EDM: q, l, n… Chromo-EDM: q, n…

  32. T ~ TEW Future de dn dA Cirigliano, Lee, Tulin, R-M Resonant Non-resonant One Loop EDMs & Baryogenesis

  33. Dominant in nuclei & atoms EDMs in SUSY One-loop EDM: q, l, n… Chromo-EDM: q, n…

  34. Decouple in large limit Dominant in nuclei & atoms Two-loop EDM only: no chromo-EDM Weinberg: small matrix el’s EDMs in SUSY One-loop EDM: q, l, n… Chromo-EDM: q, n…

  35. +-driven EWB 0-driven EWB Baryogenesis | sin fm | > 0.02 | de , dn | > 10-28 e-cm Mc < 1 TeV LEP II Exclusion Two loop de Cirigliano, Profumo, R-M SUGRA: M2 ~ 2M1 AMSB: M1 ~ 3M2 EDM constraints & SUSY CPV Arg(M1b*) = Arg(M2b*)

  36. +-driven EWB 0-driven EWB baryogenesis Prospective dn LHC reach LEP II excl Present de MSSM Baryogenesis: EDMs & LHC Cirigliano, Profumo, R-M

  37. mA=300 GeV, =300 GeV, M2=2M1=290 GeV WH Loops dominate for neutron & comparable to H, A for electron EDMs in SUSY: Full Two-Loop Higgs Boson Masses Li, Profumo, R-M: PRD 78:075009 (2008)

  38. EDMs in SUSY: Full Two-Loop Higgs Boson Masses Stronger limits on CPV for light Higgses & large tan Arg(M1b*) = Arg(M2b*)

  39. Baryogenesis: EDMs & LHC Higgs Boson Masses Examples w/ mstop = 125 GeV,mA=200 GeV: tan=15, sin =0.05; tan~5, sin =0.1 Stronger limits on CPV for light Higgses & large tan Large tan (g-2) & universal gaugino CPV challenging for MSSM EWB

  40. Arg(M1b*) = Arg(M2b*) / Weak dependence of de , dn on Arg(M1b*) EDMs & EWB: Non-universal phases Li, Profumo, R-M: PLB 673:95 (2009) Res  EWB not compatible with dn Res & non-res  EWB compatible with future dn , light mA, & moderate tan

  41. Summary • EWB remains a viable and testable scenario for explaining the cosmic baryon asymmetry • We are making progress in refining YB & EDM computations with reduced theoretical uncertainties • Input from EDM searches, collider studies, & theory needed to address the origin of matter problem

More Related