1 / 97

“Elementary Particles” Lecture 5

“Elementary Particles” Lecture 5. Niels Tuning Harry van der Graaf. Thanks. Ik ben schatplichtig aan: Dr. Ivo van Vulpen (UvA) Prof. dr. ir. Bob van Eijk (UT) Prof. dr. Marcel Merk (VU). Homework. Exercises Lecture 4:. Adjoint spinor :. +. Exercises Lecture 4:. Exercises Lecture 4:.

austin
Download Presentation

“Elementary Particles” Lecture 5

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. “Elementary Particles”Lecture 5 Niels Tuning Harry van der Graaf Niels Tuning (1)

  2. Thanks • Ik ben schatplichtig aan: • Dr. Ivo van Vulpen (UvA) • Prof. dr. ir. Bob van Eijk (UT) • Prof. dr. Marcel Merk (VU) Niels Tuning (2)

  3. Homework

  4. Exercises Lecture 4: Adjointspinor: + Niels Tuning (4)

  5. Exercises Lecture 4: Niels Tuning (5)

  6. Exercises Lecture 4: Niels Tuning (6)

  7. Exercises Lecture 4: Niels Tuning (7)

  8. Exercises Lecture 4: Niels Tuning (8)

  9. Exercises Lecture 4: Niels Tuning (9)

  10. Exercises Lecture 4: Niels Tuning (10)

  11. Exercises Lecture 4: Niels Tuning (11)

  12. Plan 11 Feb • Intro: Relativity and accelerators • Basis • Atom model, strong and weak force • Scattering theory • Hadrons • Isospin, strangeness • Quark model, GIM • Standard Model • QED • Parity, neutrinos, weak inteaction • QCD • e+e- and DIS • Higgs and CKM 1900-1940 18 Feb 1945-1965 4 Mar 1965-1975 18 Mar 1975-2000 22 Apr 2000-2013 13 May Niels Tuning (12)

  13. Summary Lects. 1-4

  14. Lecture 1: Accelerators & Relativity • Theory of relativity • Lorentz transformations (“boost”) • Calculate energy in collissions • 4-vector calculus • High energies needed to make (new) particles Niels Tuning (14)

  15. Lecture 2: Quantum Mechanics & Scattering • Schrödinger equation • Time-dependence of wave function • Klein-Gordon equation • Relativistic equation of motion of scalar particles • Dirac equation • Relativistically correct, and linear • Equation of motion for spin-1/2 particles • Described by 4-component spinors • Prediction of anti-matter Niels Tuning (15)

  16. Lecture 2: Quantum Mechanics & Scattering • Scattering Theory • (Relative) probability for certain process to happen • Cross section • Fermi’s Golden Rule • Decay: “decay width” Γ • Scattering: “cross section” σ Scattering amplitude in Quantum Field Theory Classic a → b + c a + b → c + d Niels Tuning (16)

  17. Lecture 3: Quarkmodel & Isospin • “Partice Zoo” not elegant • Hadrons consist of quarks • Observed symmetries • Same mass of hadrons: isospin • Slow decay of K, Λ: strangeness • Fermi-Dirac statistics Δ++, Ω: color • Combining/decaying particles with (iso)spin • Clebsch-Gordan coefficients Niels Tuning (17)

  18. Lecture 4: Gauge symmetry and Interactions • Arbitrary “gauge” • Physics invariant • Introduce “gauge” fields in derivative • Interactions! • QED • Weak interactions • QCD 1 photon 3 weak bosons 8 gluons Niels Tuning (18)

  19. Outline for today: • Reminder: Gauge invariance, and the Lagrangian • Electro-magnetic interactions: QED Electric charge • Weak interactions: “QFT” Weak isospin/Flavour • Strong interactions: QCD Colour • e+e- scattering • e+e- →μ+μ- • e+e- →ccDiscovery of charm and colour (quantity “R”) • e+e- →qq g Discovery of the gluon • e+e- →Z 3 neutrino’s • e+e- →WW • Deep Inelastic Scattering (DIS) (lepton-proton scattering) • Quarkmodel: do quarks exist?? • Sub-structure • Bjorken-x, sum rules • Scaling (violations) • ‘Parton density functions’ (pdf) and ‘structure functions’ Niels Tuning (19)

  20. QED & QCD

  21. Lagrangian  Equation of motion • spin-0 particles (Klein-Gordon) • spin-1/2 fermions (Dirac) • Photons Klein-Gordon equation Dirac equation Maxwell equations Niels Tuning (21)

  22. Gauge Invariance We started globally: • Assumesymmetryψ→ψ’=ψeiα(x) • Keep Eqsvalid • Covariantderivative • Arbitrarygauge • Keep Eqsvalid • Thisimplies: ψ→ψ’=ψeiα Then we went local: Niels Tuning (22)

  23. Quantum Electro Dynamics - QED m qγμ Interaction with coupling q Fermion ψwith mass m Photon field Aμ Niels Tuning (23)

  24. Symmetries • Charge U(1) (QED) • IsospinSU(2) (Weak) • ColorSU(3) (QCD) (Why 8…? Group theory: 3x3=8+1 … ) Niels Tuning (24)

  25. More gauge transformations • We had: U(1) (QED) • Then: SU(2) (Weak) • How about: SU(3) (QCD) a=1,8: 8 gluons Another covariant derivative: with 8 Aμfields: which transform as: Gluonic field tensor: Niels Tuning (25)

  26. QCD Lagrangian qγμ m Interaction with coupling q 8 Gluon fields Aμ Self-interaction Fermion ψwith mass m ! Niels Tuning (26)

  27. Lecture 4: QED and QCD QED QCD • Local SU(3) gauge transformation • Introduce 8 Aμa gauge fields • Non-“Abelian” theory, • Self-interacting gluons • Gluons have (color) charge • Different “running” • Local U(1) gauge transformation • Introduce 1 Aμ gauge field • “Abelian” theory, • No self-interacting photon • Photons do not have (electric) charge • Different “running” Niels Tuning (27)

  28. Standard Model now (almost) complete! Niels Tuning (28)

  29. “Running” Coupling Constant (QED) • Consider e+e- →e+e-scattering: • More possibilities! • “Higher order” diagrams • Each coupling has strength 1/137 • Perturbation series α~q2 q q Niels Tuning (29)

  30. “Running” Coupling Constant (QED) • Consider e+e- →e+e-scattering: • More possibilities! • “Higher order” diagrams • Each coupling has strength 1/137 • Perturbation series • Effectively: α~q2 q q Niels Tuning (30)

  31. “Running” Coupling Constant (QED) • Coupling depends on the scale! • α(0)=1/137 • α(M2Z)=1/128 • Effectively: Niels Tuning (31)

  32. “Running” Coupling Constant • Do you need all fermions in the loop?? • Yes: Niels Tuning (32)

  33. “Running” Coupling Constant • Running in QCD • Also gluon loops • It turns out, the gluon has opposite effect! Niels Tuning (33)

  34. “Running” Coupling Constant • Running in QCD • NB: if αs>1 perturbation theory breaks down… Niels Tuning (34)

  35. Asymptotic Freedom • Running in QCD • High energy: coupling small Asymptotic freedom Niels Tuning (35)

  36. “Confinement” • Running in QCD • Low energy: coupling big Confinement barrier Niels Tuning (36)

  37. Standard Model Todo-list: • e+e- scattering • QED at work (LEP): R, neutrinos • e+p scattering • QCD at work (HERA): DIS, structure functions, scaling • No masses for W, Z • (LHC/ATLAS) Higgs mechanism, Yukawa couplings • Consequences of three families • (LHC/LHCb) CKM-mechanism, CP violation Today 21 May Niels Tuning (37)

  38. e+e- Scattering

  39. Shopping list • e+e-→μ+μ- • e+e-→cc • Confirmation of “color” • Discovery of charm • e+e-→qq g • Discovery of the gluon • e+e-→tt • Hunt for the top • e+e-→Z • 3 neutrino’s • e+e-→WW Niels Tuning (39)

  40. e+e-colliders Niels Tuning (40)

  41. Examples of e+e- processes time

  42. Examples of e+e- processes

  43. Scattering • Rutherford scattering (scattering off static point charge) • Mott scattering (now with high energy, taking into account recoil of target and magnetic moment: spin ½) • spin-½ spin-½ scattering (average over incoming spin, sum over outgoing spin) Niels Tuning (43)

  44. e+e-→μ+μ- • Point cross section • At √s=10 GeV: σ(e+e-→μ+μ-) ~ 0.9 nb Niels Tuning (44)

  45. e+e-→hadrons • Point cross section • At √s=10 GeV: • σ(e+e-→q+q-) ~ 3.6 nb

  46. e+e-→hadrons • Compare cross section of σ(e+e-→q+q-) to σ(e+e-→μ+μ-) • Photon couples to fermion charge! • Color of quarks? • Inspect Ratio R: e- f γ - f e+

  47. Prediction R: me+e- < 2mc muons quarks Without color: R = 2/3 With 3 colors: R = 2

  48. Prediction R: me+e- > 2mc muons quarks Without color: R = 10/9 With 3 colors: R = 30/9

  49. 1(3) colors prediction 1.1(3.3) 0.7(2) me+e- (GeV) data with color(udsc) With color (uds) 1 No color (udsc) No color (uds) 0

  50. e+e-→hadrons • So, quarks have color! • How about spin? e- f γ - f e+

More Related