900 likes | 1.15k Views
“Elementary Particles” Lecture 6. Niels Tuning Harry van der Graaf. Thanks. Ik ben schatplichtig aan: Dr. Ivo van Vulpen (UvA) Prof. dr. ir. Bob van Eijk (UT) Prof. dr. Marcel Merk (VU). Homework. Exercises Lecture 5:. Time was a bit short (1 week + Pinksteren) …
E N D
“Elementary Particles”Lecture 6 Niels Tuning Harry van der Graaf Niels Tuning (1)
Thanks • Ik ben schatplichtig aan: • Dr. Ivo van Vulpen (UvA) • Prof. dr. ir. Bob van Eijk (UT) • Prof. dr. Marcel Merk (VU) Niels Tuning (2)
Exercises Lecture 5: • Time was a bit short (1 week + Pinksteren) … • I propose to shift the deadline to next week. • I might add one extra exercise: look at blackboard Niels Tuning (4)
Did I miss anything? • Received homework sets: Niels Tuning (5)
Plan 12 Feb • Intro: Relativity and accelerators • Basis • Quantum mechanics, Radioactivity • Scattering theory • Hadrons • Strangeness, quark model • Symmetries, Isospin • Standard Model • Gauge invariance, QED: EM interaction • Parity, neutrinos: Weak interaction • QCD: Strong interaction • e+e- and DIS • Higgs and CKM 1900-1940 26 Feb 1945-1965 12 Mar 1965-1975 26 Mar 1975-2000 14 May 2000-2013 21 May Niels Tuning (6)
Outline for today: • Higgs mechanism • Higgs discovery at ATLAS • CKM-mechanism • CP violations at LHCb Niels Tuning (7)
Lecture 1: Accelerators & Relativity • High energies needed to make (new) particles • Theory of relativity • Lorentz transformations (“boost”) • Calculate energy in collissions • 4-vector calculus Niels Tuning (9)
Lecture 2: Quantum Mechanics & Scattering • Schrodinger equation • Time-dependence of wave function • Klein-Gordon equation • Relativistic equation of motion of scalar particles • Dirac equation • Relativistically correct, and linear • Equation of motion for spin-1/2 particles • Prediction of anti-matter • Scattering Theory • (Relative) probability for certain process to happen • Cross section dq Niels Tuning (10)
Lecture 3: Quarkmodel & Isospin • “Partice Zoo” not elegant • Hadrons consist of quarks • Observed symmetries • Same mass of hadrons: isospin • Slow decay of K, Λ: strangeness • Fermi-Dirac statistics Δ++,. Ω: color • Combining/decaying particles with (iso)spin • Clebsch-Gordan coefficients Niels Tuning (11)
Lecture 4: Gauge symmetry and Interactions • Arbitrary “gauge” • Physics invariant • Introduce “gauge” fields in derivative • Interactions! • QED • Weak interactions • QCD Niels Tuning (12)
Lecture 4: QED and QCD QED QCD • Local SU(3) gauge transformation • Introduce 8 Aμa gauge fields • Non-“Abelian” theory, • Self-interacting gluons • Gluons have (color) charge • Different “running” • Local U(1) gauge transformation • Introduce 1 Aμ gauge field • “Abelian” theory, • No self-interacting photon • Photons do not have (electric) charge • Different “running” Niels Tuning (13)
Lecture 5: e+e- scattering and DIS • e+e- scattering:QED at work: R • e+e-→μ+μ- • e+e-→cc • e+e-→qq g • e+e-→Z • e+e-→WW • e+p scattering:QCD at work: F2 • Quarkmodel: do quarks exist?? • Substructure • Bjorken-x, sum rules • Scaling • ‘Parton density functions’ (pdf) and ‘structure functions’ • Scaling violations: more quarks at higher Q2 due to QCD Niels Tuning (14)
Standard Model Todo-list: • No masses for W, Z !? • (LHC/ATLAS) Higgs mechanism, Yukawa couplings • Interactions between the three families !? • (LHC/LHCb) CKM-mechanism, CP violation Niels Tuning (15)
Prof.dr. J. Ellis Half-way there?!
Higgs mechanism • Let’s give the photon a mass! • Introduce a complex scalar field: • with: • and the Lagrangian is invariant under: Niels Tuning (18)
Scalar potential V(φ) If 2 > 0: • φ will acquire a vaccumexpectation value v, • “spontaneously” ! • System not any more “spherical” symmetric SSB vev • Spontaneous Symmetry Breaking Niels Tuning (19)
Complex scalar field φ If 2 > 0: • φ will acquire a vaccum expectation value v • Parameterize φ as: • h: Higgs boson • : Goldstone boson • Both real scalar fields h Niels Tuning (20)
Higgs mechanism • Let’s give the photon a mass! • Introduce a complex scalar field: • with: • and: • Then: Niels Tuning (21)
Higgs mechanism e2v2 22 Photon A with mass e2v2 Higgs hwith mass 22 Interactions Photon field Aμ Niels Tuning (22)
Higgs mechanism • What about this field ? e2v2 22 Photon A with mass e2v2 Higgs hwith mass 22 Interactions Photon field Aμ Niels Tuning (23)
Higgs mechanism • Unitary gauge: • Goldstone boson has been “eaten” by the photon mass e2v2 22 Photon A with mass e2v2 Higgs hwith mass 22 Interactions Photon field Aμ (24)
Higgs mechanism • Unitary gauge: • Degrees of freedom • Before: massless photon: 2, complex scalar field φ: 2 Total: 4 • After: massive photon: 3, one real scalar field h: 1 Total: 4 • Goldstone boson has been “eaten” by the photon mass e2v2 22 Photon A with mass e2v2 Higgs hwith mass 22 Interactions Photon field Aμ (25)
Higgs mechanism in the Standard Model • Let’s give the W,Z a mass! • Introduce a doublet of complex scalar fields: Niels Tuning (26)
Spontaneous symmetry breaking • Mass terms! • How about the physical fields? Niels Tuning (27)
Rewriting in terms of physical gauge bosons • W1, W2 : • W3, B: • Let’s do a ‘trick’ and ‘rotate’ the W3 and B fields to get the Z and A fields Niels Tuning (28)
Rewriting in terms of physical gauge bosons • W1, W2 : • W3, B: Niels Tuning (29)
Rewriting in terms of physical gauge bosons • W1, W2 : • W3, B: Niels Tuning (30)
Weak mixing angle (or Weinberg angle):W Rewriting in terms of physical gauge bosons • W1, W2 : • W3, B: Niels Tuning (31)
Rewriting in terms of physical gauge bosons • W1, W2 : • W3, B: Niels Tuning (32)
Spontaneous symmetry breaking (Keep the vacuum neutral) • Massterms! • How about the physicalfields? Niels Tuning (33)
Spontaneous symmetry breaking Physical fields: Mass term Mass Niels Tuning (34)
Summary: • Introduce doublet of scalar fields: • With potential: • S.S.B.: • Mass terms for gauge fields: Niels Tuning (35)
Boson masses? • Photon couples to e: • Prediction for ratio of masses: • Veltman parameter: • Higgs mass: Niels Tuning (36)
Fermion masses? • Add ad-hoc (!?) term to Lagrangian: Niels Tuning (37)
Prof.dr. J. Ellis Done
Prof.dr. J. Ellis Let’s tackle the Yukawa couplings
First: Higgs discovery
LHCb ATLAS CMS ALICE
How are discoveries made? New ? Normal muon muon ? muon muon
l+ Higgs ZZ 4 leptonssmall number of beautiful events Z l- higgs l- Z 120.000 Higgs bosons l- HZZ l+l-l+l- Only 1 in 1000 Higgs bosons decays to 4 leptons 50% chance that ATLAS detector finds them 60 (Higgs 4 lepton) events peak !? ‘other’ 52 events with Higgs 68 events
Higgs 2 photons photon higgs photon Hγγ decay peak !?
Interpretation of excess Claim discovery if: Probability of observing excess smaller than 1 in 1 milion Throwing 8 times 6 in a row
Discovery in slow-motion jul/11 jul/11 mar/12 mar/12 dec/11 dec/11 Time-line higgs discovery jul/12 aug/12 jul/11 jul/11 mar/12 dec/11 dec/11 jul/12
What is mass ?? Anno 1687 Mass is de ‘exchange rate’ between force and acceleration: Does not describe what mass is ... F = m x a Newton
What is mass ?? Anno 1905 Mass is energy Describes what mass is ! But not where it comes from … E = m x c2 Einstein
What is mass ?? Anno 1964 Mass of elementary particles is due to “friction” of ubiquitous‘Higgs field’ m: ψψH Higgs