200 likes | 710 Views
Intersección Plano-Plano. Prof. Javier Herrera. Revisión 01 – Mayo 2011. Método de plano auxiliar cortante. Determinar la recta de intersección entre el plano ABC y el plano 123 Determinar la visibilidad. Método de plano auxiliar cortante. Paso 1: Análisis
E N D
Intersección Plano-Plano Prof. Javier Herrera Revisión 01 – Mayo 2011
Método de plano auxiliar cortante Determinar la recta de intersección entre el plano ABC y el plano 123 Determinar la visibilidad
Método de plano auxiliar cortante Paso 1: Análisis Este ejercicio lo vamos a convertir en varios ejercicios de intersección Recta-Plano descomponiendo a cada plano en rectas. Primero descomponemos al plano 123 en las rectas 12 – 23 – 31 y determinamos la intersección de cada una con ABC NOTA: Si en alguna de las proyecciones una recta no tiene corte aparente con el plano, la descartamos. En este caso descartamos la recta 12 por que en la proyección vertical no corta a ABC, por lo cual únicamente vamos a determinar si 23 y 13 tienen intersección con ABC
Método de plano auxiliar cortante Paso 2: Trazamos un plano cortante PQ que contenga a la recta 13 en cualquiera de sus proyecciones (en este caso en la vertical). Se generan 2 puntos de corte aparente, el primero pertenece a AC por lo cual lo proyecto hasta AC en el plano horizontal (PH) y el segundo pertenece a AB por lo que lo proyecto hasta AB en PH Al si al unir los puntos proyectados, la línea de unión corta a la recta por donde trazamos el plano cortante PQ (en este caso 13) entonces allí habrá un punto de intersección real. En este caso no hay
Método de plano auxiliar cortante Paso 3: Trazamos un plano cortante PR que contenga a la recta 23 en cualquiera de sus proyecciones (en este caso en la vertical). Se generan 2 puntos de corte aparente, el primero pertenece a AC por lo cual lo proyecto hasta AC en el plano horizontal (PH) y el segundo pertenece a AB por lo que lo proyecto hasta AB en PH Al si al unir los puntos proyectados, la línea de unión corta a la recta por donde trazamos el plano cortante PQ (en este caso 23) entonces allí habrá un punto de intersección real. En este caso si hay
Método de plano auxiliar cortante Paso 4: Ya encontramos el primer punto de intersección real (I), lo identificamos en la vista horizontal. Este punto pertenece a la recta 23, por lo tanto lo proyectamos hasta dicha recta en el plano vertical. NOTA: Se han eliminado las líneas de proyección de los pasos anteriores para que el ejemplo quede más claro. USTED NO DEBE BORRARLAS
Método de plano auxiliar cortante Paso 5: Hasta aquí ya verificamos si las rectas que componen al plano 123 tienen intersección con el plano ABC, ahora vamos a hacer lo contrario. Descomponemos al plano ABC en las rectas AB – BC – AC y determinamos la intersección de cada una con el plano 123 NOTA: Si en alguna de las proyecciones una recta no tiene corte aparente con el plano, la descartamos. En este caso descartamos la recta BC por que en la proyección vertical no corta a 123, por lo cual únicamente vamos a determinar si AB y AC tienen intersección con 123
Método de plano auxiliar cortante Paso 6: Trazamos un plano cortante PS que contenga a la recta AC en cualquiera de sus proyecciones (en este caso en la vertical). Se generan 2 puntos de corte aparente, el primero pertenece a 23 por lo cual lo proyecto hasta 23 en el plano horizontal (PH) y el segundo pertenece a 13 por lo que lo proyecto hasta 13 en PH Al si al unir los puntos proyectados, la línea de unión corta a la recta por donde trazamos el plano cortante PS (en este caso AC) entonces allí habrá un punto de intersección real. En este caso no hay
Método de plano auxiliar cortante Paso 7: Trazamos un plano cortante PT que contenga a la recta AB en cualquiera de sus proyecciones (en este caso en la vertical). Se generan 2 puntos de corte aparente, el primero pertenece a 23 por lo cual lo proyecto hasta 23 en el plano horizontal (PH) y el segundo pertenece a 13 por lo que lo proyecto hasta 13 en PH Al si al unir los puntos proyectados, la línea de unión corta a la recta por donde trazamos el plano cortante PT (en este caso AB) entonces allí habrá un punto de intersección real. En este caso si hay
Método de plano auxiliar cortante Paso 8: Ya encontramos el segundo punto de intersección real (J), lo identificamos en la vista horizontal. Este punto pertenece a la recta AB, por lo tanto lo proyectamos hasta dicha recta en el plano vertical. NOTA: Se han eliminado las líneas de proyección de los pasos anteriores para que el ejemplo quede más claro. USTED NO DEBE BORRARLAS
Método de plano auxiliar cortante Paso 9: Ya encontramos los dos puntos de intersección. Los unimos en ambas vistas para obtener la recta de intersección y determinar la visibilidad de las rectas que conforman el área común a los planos en cada vista NOTA: Se han eliminado las líneas de proyección de los pasos anteriores para que el ejemplo quede más claro. USTED NO DEBE BORRARLAS
Método de plano auxiliar cortante Paso 10: Para determinar la visibilidad en la vista vertical, seleccionamos un punto de corte aparente y trazamos una línea imaginaria hacia la vista horizontal (línea verde). Dicha línea parte del punto de corte aparente entre AB y 13. En la vista horizontal corta primero a AB, por lo tanto el la vista vertical AB es oculta en el área común a los planos hasta que encuentre un punto de intersección o un punto de corte aparente
Método de plano auxiliar cortante Paso 11: Teniendo la visibilidad de una de las rectas, sólo queda alternar entre Visible y Oculto en el área común a los planos, la visibilidad cambia cada vez que nos topemos con un punto de intersección real o un punto de corte aparente
Método de plano auxiliar cortante Paso 12: Para determinar la visibilidad en la vista horizontal, seleccionamos un punto de corte aparente y trazamos una línea imaginaria hacia la vista vertical (línea verde). Dicha línea parte del punto de corte aparente entre CB y 23. En la vista vertical corta primero a 23, por lo tanto el la vista horizontal 23 es oculta en el área común a los planos hasta que encuentre un punto de intersección o un punto de corte aparente
Método de plano auxiliar cortante Paso 13: Teniendo la visibilidad de una de las rectas, sólo queda alternar entre Visible y Oculto en el área común a los planos, la visibilidad cambia cada vez que nos topemos con un punto de intersección real o un punto de corte aparente