1 / 11

Biot echnologie pozyskiwania ź róde ł energii odnawialnej Ogniwa biopaliwowe

Biot echnologie pozyskiwania ź róde ł energii odnawialnej Ogniwa biopaliwowe. Pozyskiwanie energii elektrycznej ze żródeł biologicznych Bioogniwa paliwowe. Bioogniwa paliwowe to rodzaj ogniw paliwowych, w których energia chemiczna wytwarzana na drodze enzymatycznej

aya
Download Presentation

Biot echnologie pozyskiwania ź róde ł energii odnawialnej Ogniwa biopaliwowe

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Biotechnologie pozyskiwania źródeł energii odnawialnej Ogniwa biopaliwowe

  2. Pozyskiwanie energii elektrycznej ze żródeł biologicznych Bioogniwa paliwowe Bioogniwa paliwowe to rodzaj ogniw paliwowych, w których energia chemiczna wytwarzana na drodze enzymatycznej lub mikrobiologicznej, przekształcana może być w energię elektryczną

  3. Rodzaje ogniw biopaliwowych ogniwa mikrobiologiczne– ogniwa oparte na wykorzystaniu żywych mikroorganizmów. W ogniwach bezpośrednich energia elektryczna jest generowana w wyniku aktywności katabolicznej drobnoustrojów znajdujących się w komorze anodowej. W ogniwach pośrednich wykorzystuje się np. rodziny bakterii Clostridium i Enterobacter, wytwarzających w trakcie przemian metabolicznych wodór, służący jako paliwo w klasycznych ogniwach paliwowych. ogniwa enzymatyczne– ogniwa, w których jako katalizatory stosuje się enzymy. Jako katalizator anodowy wykorzystuje się enzymy katalizujące reakcje utleniania, np.: dehydrogenazę mleczanową, dehydrogenazę glukozową, dehydrogenazę alkoholową, oksydazę glukozową. Katalizatorem katodowym mogą być m.in.: oksydaza p-bifenylowa – lakkaza, oksydaza bilirubiny, oksydaza cytochromowa. Wszystkie te enzymy katalizują redukcję tlenu do wody.

  4. Zasada działania bioogniwa mikrobiologicznego Obrazy z mikroskopu konfokalnego biofilmu drobnoustrojów na powierzchni elektrody. Komórki żywe – kolor zielony; komórki martwe – kolor czerwony Bakterie znajdujące się w komorze anodowej utleniają glukozę do CO2. Elektrony uwolnione z cząsteczek donora są przekazywane do elektrody w wyniku bezpośredniego kontaktu, poprzez nanoprzewody lub za pośrednictwem nanoprzenośników. W wyniku tego procesu, w komorze anodowej są także wytwarzane protony, które migrują przez kationowymienną membranę (CEM) do komory katodowej. Elektrony przepływają z anody do katody przez opór zewnętrzny. W przestrzeni katodowej reagują one z akceptorem ostatecznym (tlen) i protonami. Najbardziej efektywne – mieszane kultury bakterii

  5. Rozwiązania konstrukcyjne bioogniw mikrobiologicznych A – bioogniwo z mostkiem solnym; B- układ czterech ogniw, w których komory są oddzielone membranami; C – układ z ciągłym przepływem przez komorę anodową; D – ogniwo typu fotoheterotroficznego; E – ogniwo jednokomorowe z katodą powietrzną; F - ogniwo typu H z dwiema komorami wyposażonymi w systemu odgazowania

  6. Rozwiązania konstrukcyjne bioogniw mikrobiologicznych do pracy ciągłej A – ogniwo rurowe z przepływem wstępującym. Anoda wewnętrzna grafitowa, katoda zewnętrzna; B – ogniwo rurowe z przepływem wstępującym. Anoda na dole, katoda u góry, membrana wbudowana; C - ogniwo płytowe. Przepływ serpentynowy; D – system jednokomorowy z wewnętrzną, koncentryczną katodą powietrzną otoczoną komorą anodową z elektrodami grafitowymi; E – ogniwo zespolone (6 elementów)

  7. Zasada działania fotoogniwa biopaliwowego ABTS Cyjanobakterie znajdujące się w komorze anodowej, pod wpływem światła utleniają H2O do O2 i H+ oraz redukują cząsteczki mediatora DMBQ (2,4-dimetylo-1,4-benzochinonu). DMBQ jest utleniany w bezpośredniej reakcji anodowej. W komorze katodowej następuje redukcja tlenu do wody katalizowana przez oksydazę bilirubinową, W reakcji tej mediatorem jest ABTS. Parametry ogniwa – max. moc – 0.13 mW; SEM – 0.26 V, przy oporze zewnętrznym 500 ; wydajność konwersji energii świetlnej – 1.9%

  8. Zasada działania mikrobiologicznego ogniwa biopaliwowego A - w układzie przeniesienia elektronów do anody poprzez cząsteczki mediatora (MET); B – w układzie bezpośredniego przeniesienia elektronu (DET)

  9. Ogniwa enzymatyczne Zasada działania jednego z rodzajów jednokomorowego ogniwa enzymatycznego. Anoda – elektroda złota pokryta monowarstwą chinonu pirochinoliny (PQQ) i FAD za pośrednictwem monowarstwy cysteaminy. Na monowarstwie PQQ-FAD immobilizowane cząsteczki oksydazy glukozowej. Reakcja –trójetapowa, dwuelektronowa Katoda – kompleks cytochrom c/oksydaza cytochromu c immoblizowane na monowartwie maleinimidowej osadzonej na elektrodzie złotej. Reakcja – redukcja tlenu do wody.

  10. Zasada konstrukcji pośrednich ogniw biopaliwowych

  11. Parametry ogniw biopaliwowych Maksymalna teoretyczna SEM do 1,1 V. Maksymalne osiągnięte napięcie – 0,62 V Moc 0.1 – 20 W/cm2 powierzchni elektrody. Możliwe do 100 – 200 W/cm2 • Perspektywy zastosowań praktycznych: • inżynieria biomedyczna, m.in.. zasilacze • do rozruszników serca, sensorów glukozy • (paliwo – gluikoza i tlen z krwi) • zasilacze do telefonów komórkowych i innego • sprzętu mikroelektronicznego (paliwo – alkohol) • uzyskiwanie energii elektrycznej z • przerobu ścieków, odpadów ligninocelulozowych • osadów dennych w zbiornikach wodnych Moc uzyskiwana z ogniw różnego typu

More Related