1 / 18

Logic cells and interconnect strategies for nanoscale reconfigurable computing fabrics

Logic cells and interconnect strategies for nanoscale reconfigurable computing fabrics. I. O'Connor , K. Jabeur, D. Navarro, N. Yakymets Lyon Institute of Nanotechnology, Lyon, France P.E. Gaillardon, M.H. Ben Jamaa, F. Clermidy CEA-LETI-MINATEC, Grenoble, France. nano.grain. Outline.

azize
Download Presentation

Logic cells and interconnect strategies for nanoscale reconfigurable computing fabrics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Logic cells and interconnect strategies for nanoscale reconfigurable computing fabrics I. O'Connor, K. Jabeur, D. Navarro, N. Yakymets Lyon Institute of Nanotechnology, Lyon, France P.E. Gaillardon, M.H. Ben Jamaa, F. Clermidy CEA-LETI-MINATEC, Grenoble, France nano.grain

  2. Outline • Some technology fabric considerations • Logic cells • Reduced-complexity dynamic standard cells • Reconfigurable logic cells and design methods • Interconnect strategies • Matrix topologies • Island-style architecture • Metrics and comparisons • Conclusions

  3. Explaining the jargon • nanoscale computing fabric (nanoFabric): • nanoFabric: an array of connected nanoscale logic blocks (nanoBlocks) • nanoBlock: a circuit block containing programmabledevices to compute boolean logic functions and means to route data • usually hybrid approach (silicon die, or CMOS compatible): • bottom-up structure: chemical self-assembly for dense and regular arrangement of elements • top-down structure: conventional process options for interconnect or for computation • and memory …

  4. G PG state +V +V on (n) -V +V off (n) +V -V off (p) -V -V on (p) X 0 off (n/p) Double-gate ambipolarity • In DG-CNTFETS, the Id-Vg characteristic demonstrates ambipolarity • Vbg > 0V: device behavior = n-type FET • Vbg < 0V: device behavior = p-type FET • Vbg floating / 0V: device is in the off state • Verilog-A model developed (IMS) • Reduced-complexity logic cells • Ultra fine-grain reconfigurable logic cells Y.-M. Lin et al., IEEE Trans. Nanotechnology, 4(5),2005

  5. Hybrid technology • "SelectiveGrowth of Well-AlignedSemiconducting Single-WalledCarbon Nanotubes", L. Ding et al., Nano Lett., 9(2), 800 (2009) • "Monolithicintegration of CMOS VLSI and carbon nanotubes for hybridnanotechnology applications", D. Akinwande et al., IEEE Trans. Nanotechnology, 7(5), 636 (2008)

  6. Outline • Some technology fabric considerations • Logic cells • Reduced-complexity dynamic standard cells • Reconfigurable logic cells and design methods • Interconnect strategies • Matrix topologies • Island-style architecture • Metrics and comparisons • Conclusions

  7. Vdd Ev VbA A VbB B Y Pc gnd +V +V In1 +V Out PC In2 Inn Dynamic logic standard cells • use the extra gate (PG) to reduce complexity • function path includes EV phase • transistor count: • 2n (static logic) • n+2 (conventional DL) • n+1 (this work) • clocking strategy: • Double clock (DCK) • Multiple clock (MCK) • Single clock (SCK) EV function path • Layoutflipping: rich set of operators

  8. function path function path function path In2 In1 PC EV- Out +V +V In1 In2 Inn Inn EV+ Out +V +V Clk EV PC Out Inn In2 In1 +V -V Clocking strategies and cell variants • PUN • EV+{0,+V}, EV-{0, -V}, PC{0,+V} • mixed N- and P-function path: more complex functions • PUN • EV{0,+V}, PC{0,+V} • Precharge: (PC=+V, EV=0) • Evaluation: (PC=0, EV=+V) DCK MCK SCK • PDN • Clk{0,+V} • Precharge: • (Clk=0) • Evaluation: (Clk=+V) • complementary functions

  9. Comparison (simulation) • Vdd=1V fclk=3GHz, tr=tf=20ps, CL=150aF • av. power +(0-20)% • wc. delay -(30-50)% • no EV transistor, lower branch resistance • pdp –(25-40)%

  10. Vdd VbgA VbgB VbgC Y +V +V +V A+B EV1 PC2 +V +V -V A+B Y +V -V +V A.B +V -V -V A+B A VbA VbB B VbC -V +V +V A.B -V +V -V A+B C -V -V +V A.B PC1 EV2 -V -V -V A.B +V 0 +V A +V 0 -V A 0 +V +V B 0 +V -V B 1 0 0 0 0 0 -V 0 PC1 EV1 PC2 EV2 C f(A,B,VbA,VbB) Y f(C,VbC) t Reconfigurable logic cell CNT-DR7T  = 1.5nm Ioff = 10-13A Ion/Ioff=105 J. Liu, I. O'Connor, D. Navarro, F. Gaffiot, El. Lett., 43(9), April 2007 • boolean data inputs A and B, data output Y {0,+V) • four-phase non-overlapping clock signals PC1, PC2, EV1, EV2 {0,+V) • ternary configuration inputs VbgA, VbgB, VbgC{-V,0,+V)

  11. Towards complete operator sets DRLC-6T 15 functions DRLC-9T 16 functions • 1.5X-2X decrease in power consumption • more functions, fewer transistors, one extra configuration signal

  12. Outline • Some technology fabric considerations • Logic cells • Reduced-complexity dynamic standard cells • Reconfigurable logic cells and design methods • Interconnect strategies • Matrix topologies • Island-style architecture • Metrics and comparisons • Conclusions

  13. Physical view: clusters of matrices

  14. Directed matrix interconnect topologies B logic function Banyan_4d4w frc configuration inputs Y Y data output (x2) Baseline_4d4w A data inputs Mod_Omega_4d4w Flip_4d4w

  15. Mapping success rate for matrices 90%@6pt omega topology can achieve up to 25% more functions 40%@12pt 75%-80%@6pt 20%-30%@12pt % exploitable cases 0-fault omega 0-fault banyan 0-fault baseline 0-fault flip

  16. Towards undirected topologies f11 f11 f11 f12 f12 f12 f21 f21 f21 f22 f22 f22 Banyan Systolic array Cross-cap

  17. When to move to island-style? 1-bit FA application Island-style Cell-matrix

  18. Wrap-up • Logic with ambipolar DG-CNTFETS: • reduced-complexity dynamic-logic standard cells with –(25-40)% PDP • complete operator set dynamic-logic reconfigurable cells with low transistor count and power consumption • Interconnect strategies: • directed matrix interconnect topology exploration • cross-cap topology proposed to relieve latency and data-directivity issues • matrices within islands allow efficient packing • routing between islands to be explored …

More Related