620 likes | 758 Views
Purpose of this talk. Diffusion. Ronald Griessen ACTS workshop May 24, 2007. Water droplet. Waves. Wave equation. Diffusion. Fick’s law Equation of continuity. J. dx. C(x,t). Singularities decay immediately. is a solution of. Diffusion in semi-infinite space.
E N D
Purpose of this talk Diffusion Ronald Griessen ACTS workshop May 24, 2007
Waves Wave equation
Fick’s law Equation of continuity J dx C(x,t)
Singularities decay immediately is a solution of
Cu Pd Y Pd
Cu Pd
Cu Pd Cu Pd
Cu Pd Cu Y Pd Y
Cu Pd Cu Y Pd Y
Cu Pd Cu Y Pd Pd
Fast H diffusion in bcc Pd-Cu Y Pd Cu Pd
Fast H diffusion in bcc Pd-Cu Temperature oC Cu atomic percent palladium
Fick’s law Equation of continuity ? ? dx Is this true Is this true
Pressure-composition isotherm of YHx at T=293 K Kooij et al. 1999
H Hydrogenography in Yttrium Y2O3 Pd Y Den Broeder, van der Molen et al, Nature 394 (1998) 656
3 g hcp- H/Y g hcp- 2 b metal insulator 1 a 0
3 g hcp- H/Y g hcp- 2 b metal insulator 1 a 0
This picture demonstrates that instead of
Switchable mirrors as indicators H Y2O3 Pd Y V SiO2
Sample architecture SiO2 V V
Sample architecture Pd 10 nm Y 50 nm SiO2 V V
Hydrogen loading Pd Y SiO2 V V H x=0 x
H-loading: 473K, 1mbar, 3h Pd x=0 10 mm dV 25 nm 50 nm 75 nm 100 nm 125 nm YH2 front x
Diffusion in a multilayer The chemical potential MUST be continuous The concentration MAY have discontinuities
? Usual diffusion Real diffusion
Usual diffusion Real diffusion However, the chemical potential MUST be continuous
Ni Ni Mg Mg Ti Ti
c = c(x,t) cH = f(t) Ni Ni Mg Mg Ti Ti
c = c(x,t) cH = f(t) Ni Ni Mg Fast loading, Very slow unloading Mg Ti Ti Relatively slow loading, Very fast unloading
Random walk of a photon With vthe velocity of light athe absorption coefficient
Sample architecture Y 50 nm V 250 nm SiO2 V 50 nm Pd 10 nm
Hydrogen loading 32 min 1 bar 373 K V 250 nm V 50 nm YH2 YH3 Pd
110 min 1 bar 373 K YH2 YH3 Pd