290 likes | 445 Views
Análise Conformacional de Proteínas – Física na Biologia?. Por que fazer Física + Bioquímica + Biologia?. Física em Bioquímica/Biologia? Bioquímica/Biologia em Física? Física + Biologia + Química + Matemática = BIOFÍSICA. Onde a Física encontra a Biologia?
E N D
Física em Bioquímica/Biologia? Bioquímica/Biologia em Física? Física + Biologia + Química + Matemática = BIOFÍSICA Onde a Física encontra a Biologia? Em que a Física pode ajudar a Biologia?
Século XX: século da Física Século XXI: promessa de ser o século da Biologia Biologia Moderna (ou Biofísica Moderna) Técnicas experimentais complexas: difração de raios-X, espectroscopia, microscopias, Ferramentas matemáticas poderosas Métodos computacionais sofisticados: aplicações tanto em termos experimentais quanto teóricos (banco de dados, simulações, etc).
Como a Física pode ajudar a Biologia? Técnicas de visualização direta (microscopias): perda da dinâmica dos processos Como investigar os blocos construtores da vida? Medidas indiretas: propriedades físicas e químicas Técnicas físicas Interação Radiação-Matéria Espectroscopias em geral Técnicas químicas Métodos de separação: eletroforese, cromatografia Técnicas bioquímicas Ferramentas de DNA recombinante
-queratina – cabelo (penas, lã, etc...) PROTEÍNAS Hemoglobina – oxigênio Proteína de canais iônicos – transporte dentro e fora da cèlula Proteínas de músculo – miosina – movimento muscular Enzimas na saliva, estômago, intestino - digestão Receptores - siganilização Complexos proteícos –divisão celular e produção de novas proteínas Anticorpos- proteínas de defesa
Técnicas Físico-Químicas ELETROFORESE SDS-PAGE FOCALIZAÇÃO ISOELÉTRICA ULTRACENTRIFUGAÇÃO CROMATOGRAFIAS CALORIMETRIA RESSONÂNCIA MAGNÉTICA NUCLEAR RESSONÂNCIA PARAMAGNÉTICA ELETRÔNICA DIFRAÇÃO DE RAIOS-X (CRISTALOGRAFIA) ABSORÇÃO ÓTICA FLUORESCÊNCIA DICROÍSMO CIRICULAR INFRAVERMELHO SAXS MICROSCOPIA ELETRÔNICA ESPECTROMETRIA DE MASSA … + Modelos Teóricos
1. Problema Básico • Bases físicas para as estruturas organizadas de proteínas e polipeptídeos. Importante já que atividade biológica é altamente sensível a variações nas conformações tridimensionais adotadas. Biopolímeros podem ser desenovelados (calor, uréia) e depois reenovelados ao estado original conformações possíveis devem ter algo em comum termodinamicamente favoráveis (minimização de energia) Objetivos: discutir fatores que determinam conformações I. Fatores geométricos intrínsecos (comprimento de ligações e ângulos) II. Fatores estéricos, potenciais III. Ligações de hidrogênio, interações hidrofóbicas, pontes disulfeto Se I, II e III fossem completamente entendidos + ferramentas matemáticas previsão da estrutura 3D a partir da seqüência
N C Primária 2. Geometria da Cadeia Polipeptídica Ligação Peptídica Adaptado Branden e Tooze
2. Geometria da Cadeia Polipeptídica Adaptado Cantor & Schimmel Ao contrário das formas periódicas regulares da tabela, proteínas têm ângulos torsionais variando consideravelmente de resíduo para resíduo.
2. Geometria da Cadeia Polipeptídica Terciária Resíduos distantes na seqüência primária se tornam próximos quando a proteína se enovela Interações entre as cadeias laterais contribuem para estabilização da estrutura tridimensional: potenciais não-ligantes
3. Mecânica Molecular “A informação necessária para enovelar uma proteína em seu estado nativo está contida na sua seqüência” (Anfinsen,1961) Simplificações: • Comportamento médio do sistema pode ser representado por uma única molécula • Remover grande parte do solvente • Conformação nativa é aquela correspondente a um mínimo de energia potencial • Tratamento clássico (Newtoniano) Princípios Básicos: • Energia total: E = (cinética) + (potencial) • Cinética K Movimento • Potencial V : associada às diversas interações entre corpos • 2ª Lei de Newton: F = (massa).(aceleração) = m (taxa da taxa de variação temporal da posição) = m d2r/dt2 • Força: F = -(taxa de variação espacial da energia potencial) = - dV/dr • Campo de forças
V(r) r 3. Mecânica Molecular Quando F = 0 (estado de equilíbrio) -dV/dr = 0 V(r) é mínima Minimizar energia potencial e achar configuração correspondente, fornecendo figura estática do sistema em equilíbrio Como determinar as contribuições ao potencial Adaptado P. Pascutti, UFRJ
3. Mecânica Molecular Potenciais Moleculares (campo de forças): interações intramoleculares (gás ideal) Soma sobre todos os resíduos da molécula Vbonding: associado com ligações covalentes Vnon-bonding: associado com interações à distância (dipolo, eletrostática) Átomos são esferas de van der Waals Potenciais Ligantes (Vbonding): dominam energia potencial energia para se quebrar uma ligação, por exemplo (entalpia)
Cb H O H r Ca N Cb’ C N C q Ca’ H O H 3. Mecânica Molecular Potenciais ligantes harmônicos: aproximação massa-mola Adaptado P. Pascutti, UFRJ
Cb H H Ca N Cb’ C C Ca’ O H 3. Mecânica Molecular Potencial ligante de torção V = K [1 + cos(n - d)] Adaptado P. Pascutti, UFRJ
3. Mecânica Molecular Potenciais Não-Ligantes (Vnon-bonding): Inlcuem todas as interações não diretamente envolvidas em ligações covalentes ex.: carga-carga, dipolo-dipolo, estereoquímica Dependem da distância Dependem da constante dielétrica do meio (inlcuir solvente) (A) Potencial de Coulomb: interações eletrostáticas
3. Mecânica Molecular (B) Potencial de van der Waals: Repulsão (sobreposição nuvens eletrônicas) Dispersão London Aproximação de hard-sphere m=12: potencial de Lennard-Jones
3. Mecânica Molecular Complementaridade estrutural Forças van der Waals são fracas, mas em maior número
O + C N + H +0.28 +0.38 -0.28 -0.38 3. Mecânica Molecular (C) Potencial dipolo-dipolo: Diferentes orientações dos planos das ligações peptídicas ao longo da estrutura têm diferentes energias
3. Mecânica Molecular Interações não-covalentes Lennard-Jones Adaptado van Holde OBS: Acrescentar a essas o potencial Vbond da ligação covalente (~150 até > 1000 kJ/mol)
V(r1,r2,...,rNat) = ½ Kqn(q - q0n)2 + ½ Kbn(bn - b0n)2 + ½ Kxn(xn - x0n)2 + Kn[1 + cos(nnn - dn)] + [C12(i,j)/rij12 - C6(i,j)/rij6 + qiqj/4pe0erij] 3. Mecânica Molecular Função Energia Potencial Total V({ri}) Somatórias sobre Nb ligações químicas, Nq ângulos entre pares de ligações consecutivas, Nx ângulos diedrais impróprios, Nângulos diedrais próprios e sobre todos os pares i e jde átomos Adaptado P. Pascutti, UFRJ
3. Mecânica Molecular Interações intramoleculares entre resíduos de Ala em cadeia polipeptídica C beta H amina Adaptado van Holde H aminas separados por menos de 0,1 nm
3. Mecânica Molecular Profile energia potencial para Ala em função de Adaptado van Holde
3. Mecânica Molecular Diagrama de contorno para a energia de um resíduo de Ala em uma cadeia polipeptídica Ramachandran, J. Mol. Biol. 1963 hélice esquerda Mínimo I < Mínimo II: preferência por hélice direita Concorda com Ramachandran: impedimentos estereoquímicos cadeia principal e lateral até C é que mandam! hélice direita J. Mol. Biol. 1967
3. Mecânica Molecular Diagrama de contorno para a energia de um resíduo de Gly em uma cadeia polipeptídica Regiões simétricas: maior flexibilidade Conformações mais compactas são possíveis: valores pequenos dos ângulos torsionais J. Mol. Biol. 1967
Reflexões Áreas interdisciplinares apresentam muitos atrativos nos dias de hoje: estão na moda! Cuidado com a armadilha dessas áreas Não saber nada de nada! Mantenha-se na sua especialidade e aprenda a falar e a ouvir a língua das outras Ser interdisciplinar não significa deixar de fazer Física CONCLUSÃO: ESTUDEM FÍSICA!!! E SE INTERESSEM POR OUTRAS ÁREAS