1 / 9

Section 7-1

Using Proportions. Section 7-1. Ratio. A ratio is a comparison of two numbers such as a : b. Ratio:. When writing a ratio, always express it in simplest form. ** Ratios must be compared using the same units. A ration can be expressed: 1. As a fraction

baxter
Download Presentation

Section 7-1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Using Proportions Section 7-1

  2. Ratio A ratio is a comparison of two numbers such as a : b. Ratio: When writing a ratio, always express it in simplest form. ** Ratios must be compared using the same units. A ration can be expressed: 1. As a fraction 2. As a ration 3 : 7 3. Using the word “to” 3 to 7

  3. A 8 10 D 4.8 3.6 B C 6 Example: What is the ration of side AB to side CB in the triangle? Now try to reduce the fraction.

  4. A 8 10 D 4.8 3.6 B C 6 Example: What is the ration of side DB to side CD in the triangle? Now try to reduce the fraction.

  5. Ratio: Decimal: Example………. A baseball player goes to bat 348 times and gets 107 hits. What is the players batting average? Solution: Set up a ratio that compares the number of hits to the number of times he goes to bat. Convert this fraction to a decimal rounded to three decimal places. The baseball player’s batting average is 0.307 which means he is getting approximately one hit every three times at bat.

  6. Proportion Proportion: An equation that states that two ratios are equal. Terms First Term Third Term Second Term Fourth Term To solve a proportion, cross multiply the proportion: Extremes: a and d Means : b and c

  7. x 2 ft 84 yards 356 yards Proportions- examples…. Example 1: Find the value of x. Multiply by 3 to change yards into feet.

  8. = 6 • 5 8 • x Example 2: Solve the proportion. 8x = 30 x = 3.75 8x = 30 8 8

  9. Examples: Find the measure of each angle. • Two complementary angles have measures in the ration 2 : 3. • Two supplementary angles have measures in the ratio 3 : 7. • The measures of the angles of a triangle are in a ratio of 2 : 2 : 5. • The perimeter of a triangle is 48cm and the lengths of the sides are in a ratio of 3 : 4 : 5. Find the length of each side. 36 and 54 54 and 126 40, 40, and 100 12cm, 16cm, and 20cm

More Related